Рациональные выражения начинают целенаправленно изучаться в 7 классе. Причем в 7 классе познаются основы работы с так называемыми целыми рациональными выражениями, то есть, с рациональными выражениями, которые не содержат деления на выражения с переменными. Для этого последовательно изучаются одночлены и многочлены, а также принципы выполнения действий с ними. Эти все знания в итоге позволяют выполнять преобразование целых выражений. В 8 классе переходят к изучению рациональных выражений, содержащих деление на выражение с переменными, которые называют дробными рациональными выражениями. При этом особое внимание уделяется так называемым рациональным дробям (их также называют алгебраическими дробями), то есть дробям, в числителе и знаменателе которых находятся многочлены. Это в итоге дает возможность выполнять преобразование рациональных дробей. Полученные навыки позволяют перейти к преобразованию рациональных выражений произвольного вида. Это объясняется тем, что любое рациональное выражение можно рассматривать как выражение, составленное из рациональных дробей и целых выражений, соединенных знаками арифметических действий. А работать с целыми выражениями и алгебраическими дробями мы уже умеем.
(x + 5)(x^2 - 25) = 0
(x + 5)(x - 5)(x + 5) = 0
(x - 5)(x + 5)^2 = 0
1)
x - 5 = 0
x = 5; 2)x^2 (x + 5) - 25(x + 5) = 0 (x + 5)* (x^2 - 25) = 0
(x + 5)^2 = 0 x x = - 5;
ответ:
- 5; 5 + 5 = 0