Пусть х ящиков в час планировали разгрузить грузчики, тогда бы 160 ящиков они разгрузили за часов. Но они разгружали х+12 ящиков, справившись с работой за часов, что на 3 часа раньше срока. Составим и решим уравнение: - = 3 Умножим все на х(х+12), чтоб избавиться от дробей. - = 3х(х+12) 160(х+12) - 160х=3х²+36х 160х+1920-160х=3х²+36х 3х²+36х-1920=0 (сократим на 3) х²+12х-640=0 D=b²-4ac=12²-4×1×(-640)=144+2560=2704 (√2704=52) х₁= = = 20 х₂ = = = -32 - не подходит, т.к. х<0 20 ящиков в час они планировали разгружать, но разгружали х+12=20+12=32 ящика. ответ: грузчики разгружали 32 ящика в час.
Решение y = x³ + 3x² 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² + 6x или f'(x) = 3x*(x + 2) Находим нули функции. Для этого приравниваем производную к нулю 3x*(x + 2) = 0 Откуда: 3x = 0 x₁ = 0 x + 2 = 0 x₂ = - 2 (-∞ ;-2) f'(x) > 0 функция возрастает (-2; 0) f'(x) < 0 функция убывает (0; +∞) f'(x) > 0 функция возрастает В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
ответ:3π/2+3πn,n∈z
Объяснение: cosx/3·cos2x/3+sin2x/3·sinx/3-1/2cosx/3=0
cos(2x/3-x/3)-1/2cosx/3=0
cosx/3-1/2cosx/3=0
1/2c0sx/3=0
cosx/3=0
x/3=π/2+πn,n∈z⇒ x=3π/2+3πn,n∈z
(у тебя неточное условие,обрати внимание где знак =?)