М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
stone8r4
stone8r4
25.01.2020 15:45 •  Алгебра

Найти угловой коэффициент касательной, проведенной к

графику функции

у= 3x^3 – 2х + 1 в его точке с абсциссой х0 = 1

👇
Ответ:
Boikomariana12
Boikomariana12
25.01.2020
Чтобы найти угловой коэффициент касательной, проведенной к графику функции y = 3x^3 – 2х + 1 в его точке с абсциссой х0 = 1, нам понадобится использовать понятие производной.

1. Сначала найдем производную функции y = 3x^3 – 2х + 1. Для этого нужно поочередно дифференцировать каждый член функции:
y' = d(3x^3)/dx - d(2x)/dx + d(1)/dx
= 9x^2 - 2

2. Теперь, найдя производную функции, мы получили уравнение, которое определяет скорость изменения функции y. Чтобы найти угловой коэффициент касательной, нужно подставить абсциссу x0 = 1 в формулу производной:
y'(x0) = 9(1)^2 - 2
= 9 - 2
= 7

3. Полученное значение 7 является угловым коэффициентом касательной в точке х0 = 1. Это означает, что касательная имеет наклон 7 в этой точке.

Таким образом, угловой коэффициент касательной, проведенной к графику функции y = 3x^3 – 2х + 1 в его точке с абсциссой х0 = 1, равен 7.
4,7(74 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ