х∈[-2,8, 5)
Объяснение:
Дробное выражение, если х в знаменателе, имеет смысл, если х больше нуля, так как на ноль делить нельзя.
И подкоренное выражение должно быть больше нуля.
2-0,4х>0
-0,4х> -2
х<5
x∈(-∞, 5), при х от - бесконечности до 5 (5 не входит в число решений).
Это первое неравенство.
Второе: 0,7+х/4>=0
2,8+x>=0
x>= -2,8
x∈[-2,8, +∞)
Пересечение решений: х∈[-2,8, 5), то есть, х должен быть равен или больше -2,8 и меньше 5.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 2). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
2 = √а
(2)² = (√а)²
4 = а
а=4;
б) Если х∈[0; 4], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√4=2;
При х∈ [0; 4] у∈ [0; 2].
в) y∈ [9; 20]. Найдите значение аргумента.
9 = √х
(9)² = (√х)²
х=81;
20 = √х
(20)² = (√х)²
х=400;
При х∈ [81; 400] y∈ [9; 20].
г) Найдите при каких х выполняется неравенство у ≤ 3.
у ≤ 3
√х ≤ 3
(√х)² ≤ (3)²
х ≤ 9;
Неравенство у ≤ 3 выполняется при х ≤ 9.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 2√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
2√3 = √а
(2√3)² = (√а)²
4*3 = а
а=12;
b) Если х∈[0; 16], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√16=4;
При х∈ [0; 16] у∈ [0; 4].
с) y∈ [13; 21]. Найдите значение аргумента.
13 = √х
(13)² = (√х)²
х=169;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [169; 441] y∈ [13; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4;
Неравенство у ≤ 2 выполняется при х <= 4.
Фото
Объяснение: