(2x+3)(2x+1)/(x-1)(x-4)>=0 Найдем значения "x", которые обнуляют скобки в числителе и знаменателе: 2x+3=0 => x=-1,5 2x+1=0 => x=-0,5 x-1=0 => x=1 x-4=> x=4
Эти точки делят числовую прямую на 5 промежутков.Точки 1 и 4 не будут принадлежать промежутку, т.к. в этих точках знаменатель обращается в ноль.
[-1,5][-0,5](1)(4) + - + - + Смотрим, на каком из промежутков значение неравенства > 0.Это и будет ответом: x принадлежит (- бесконечность;-1,5] U [-0,5;1) U (4; + бесконечность)
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы. Для построения прямой достаточно 2 точек. У=1/3х - 8/3 Пусть Х=0 тогда У=1/3*0 - 8/3= 8/3= -2 2/3 А(0;-2 2/3)
Пусть Х=2 тогда У=1/3*2-8/3= 2/3-2 2/3 = -2. В(2;-2) Через точки А и В проведи прямую
У=2/3х -10/3 Пусть Х =0 у= - 3 1/3 С(0; -3 1/3) Х= 1 У=2/3*1 - 3 1/3= - 2 /2/3 D(1; -2 2/3) Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
УДАЧИ!