ответ:2х^2+16х+с=0
Решаю через дискриминант а=2, b=16 , c=1
D=b^2-4ac=16^2-4×2×1= 256-4=252>0 поэтому два корня
X¹=3,
X²= в знаменнику(сверху) b^2-√D в чисельнику (снизу) 2а
Объяснение:=256-√254 внизу 2×2 =
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)


Это функция общего вида
2)


Это функция общего вида
3)


Это функция общего вида
3.
1)

Значит
![min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3](/tpl/images/1407/6823/69e2d.png)
2)

Значит
![min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3](/tpl/images/1407/6823/5cc0f.png)
4.

Это биквадратное уравнение. Делаем подстановку

Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

Делаем проверку:
1) а=-1

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3

Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
Наименьшее значение 0,5 (при х=-1)
Наибольшее значение 1 (при х=0)
Объяснение:
Очевидно, что наибольшее и наименьшее значения функции совпадают с обратными к наименьшим и наибольшим (соответственно) значениям функции x^2+1
Наименьшее значение эта функция принимает при х=0 и это значение равно 1.
Значит у исходной функции это наибольшее значение.
при х больше 0 функция монотонно возрастает, при х меньше 0 монотонно убывает. Значит , сравнив значения на краях отрезка заключем, что наибольшее значение достигается при х=-1 и равно 2.
Наименьшее значение исходной функции равно 1/2.
решение смотри на фотографии
Объяснение: