1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Пусть х-; 1 натуральное число, a (x-6) ;-2 натуральное число, значит х(х-6)=27 х²-6х-27=0 D=36-4*(-27)=36+108=144 x= (6+12)/2=18/2=9 x=(6-12)/2= -6/2= -3(исключаем, т.к число не натуральное 9-6=3 ответ:9;3
Пусть х см-длина, а (х-6)-ширина, значит х(х-6)=40 х²-6х-40=0 D=36-4*(-40)=196 x= (6+14)/2=20/2=10 x=(6-14)/2= -8/2= -4(исключаем, т.к ширина не может быть<0) 10-6=4см-ширина Р=2(10+4)=28см ответ:28см
Объяснение
строим графики функций, находим пределы интегрирования