Область определения данной функции можно найти опираясь на правило"Делить на о нельзя" или числитель дробного выражения не может принимать значения ,равные 0,то есть решаем уравнение х²-64=0 и тогда корни данного уравнения ,числа х=-8 и х=8 исключаем из ответа,то есть ответ в данном случае "Все числа,кроме 8 и-8". Очень часто область определения связано ещё и с определением квадратного корня,то есть выражение под квадратным корнем должен быть неотрицательным.В старших классах свойства логарифма может быть:там выражение под логарифмом должно быть положительным.
Решаем уравнение х ( х² - 64 ) = 0 Произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю: х = 0 или х² - 64 =0 (х-8)(х+8)=0 х - 8 = 0 или х + 8 = 0 х = 8 или х = - 8 Отмечаем точки х=0 х = 8 и х = - 8 на числовой прямой и находим знаки функции у = х( х²- 64) на каждом промежутке. Можно найти на одном промежутке и потом знаки будут чередоваться. f ( 10) = 10·(10²- 64)>0 - + - + (-8)(0)(8) ответ. х∈ (-∞; - 8) U (0; 8)
в)х(х+2)=5
х^2+2х-5=0