На координатной плоскости возьмем точки А(1;0), В(0;1) и С((х√3)/2; x/2). Тогда BC=√(3x²/4+(1-x/2)²)=√(x²-x+1), AC=√((х√3)/2-1)²+x²/4)=√(x²-х√3+1), AB=√2. Т.к. по неравенству треугольника BC+AC≥AB, то √(x²-x+1)+√(x²-х√3+1)≥√2. Равенство здесь достигается при C∈AB, а именно, при х=√3-1. Действительно: √((√3-1)²-(√3-1)+1)=√(6-3√3)=√3·√(2-√3)=√3·√((√3-1)²/2)=(3-√3)/√2. √((√3-1)²-√3(√3-1)+1)=√(2-√3)=√((√3-1)²/2)=(√3-1)/√2. Сумма этих выражений равна √2. Таким образом, после умножения на √2, получим, что минимальное значение равно 2.
P.S. x=√3-1 найдено из соображений, что точка С((х√3)/2; x/2) должна лежать на прямой AB, задаваемой уравнением u+v=1. Т.е. должно выполняться (х√3)/2+x/2=1, откуда x=√3-1.
если полученная дробь должна быть в 1/2 больше исходной, то (х+5)/(х+4) / х/(х+4) = 1/2 (х+5)/(х+4) * (х+4)/х = 1/2 (х+4) сокращается (х+5)/х = 1/2 х+5 = х/2 х = -10.
если полученная дробь должна быть на 1/2 больше исходной, то (х+5)/(х+4) - х/(х+4) = 1/2 (х+5-х)/(х+4) = 1/2 5/(х+4) = 1/2 5/(х+4) = 5/10 х+4 = 10 х = 6.
1) 2ab-2c+3a^2
2) 2ab-8c-3a^2 b
Объяснение:
3) 6x^4 -12x
4) 6a^2 -11ab+4b^2