М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TlPuBeT
TlPuBeT
25.05.2023 02:55 •  Алгебра

ДАЮ 100! БАЛОВ Знайдіть проміжки зростання та спадання функції
1) у=2х³+6х²=3
2) f(x)=2+5x³+x
3) f(x)=3x+x²/4+x
Доведіть, що функція спадає
f(x)=4-2x+1/2x²-1/3x³
При яких значеннях а функція f(x) зростає на R
f(x)=ax²+3x+5

👇
Ответ:
DeadShotDS
DeadShotDS
25.05.2023

1) у=2х³+6х²=3

у'=6х²+12х=6х*(х+2)≥0

-20

+             -            +

на отрезка [-2;0] функция убывает на (-∞-2] и[0;+∞) функция возрастает

2) f(x)=2+5x³+x

f'(x)=10x²+1 производная на всей области определения положительна,значит функция возрастает на (-∞;+∞)

3) f(x)=3x+x²/4+x

f'(x)=3+x/2+1=4+x/2≥0, при х≥-8 функция возрастает, при х≤8 убывает.

если условие со скобками, тогда  f'(x)=((3x+x²)/(4+x))'=

(8x+2x²-3x-x²)/(4+x)²=(x²+5x)/(4+x)²≥0 решим методом интервалов.

___-5-40

+           -          -               + возрастает на (-∞;-5] и  [0;+∞] убывает функция на промежутках [-5;-4) и(-4;0]

2. Найдем производную от f(x)=4-2x+1/2x²-1/3x³; f'(x)=-2+x-x²≥0

-(x²-x+2); т.к. x²-x+2>0 при любом значении х, что следует из того, что дискриминант 1-8=-7- отрицателен, а первый коэффициент 1 положителен, значит, -(x²-x+2)<0 при любом значении х, т.е. на R функция убывает.  Доказано.

3. это уравнение параболы, абсцисса ее вершины равна -1.5/а, как известно, в зависимости от направления ветвей параболы будет зависеть возрастание и убывание функции, но на R она не возрастает, если же а=0, то f(x)=3x+5 -линейная функция, т.к. ее угловой коэффициент положителен. то функция возрастает на всей действительной оси.

ответ при а=0

4,5(24 оценок)
Открыть все ответы
Ответ:
BandiMatrix
BandiMatrix
25.05.2023
A) y = x², x ≥ 0
Возьмём две точки x₁ и x₂, такие, что x₁ > x₂
y(x₁) = x₁²
y(x₂) = x₂²
Найдём разность значений функции:
y(x₁) - y(x₂) = x₁² - x₂² = (x₁ + x₂)(x₁ - x₂)
Т.к. x ≥ 0, то x₁ + x₂ > 0, т.к. x₁ > x₂, то x₁ - x₂ > 0. Значит, y(x₁) - y(x₁) > 0, отсюда делаем вывод, что функция возрастающая (при увеличении аргумента увеличивается и значение функции).

b)  y = x², x ≤ 0
Делаем то же самое и получаем:
y(x₁) - y(x₂) = x₁² - x₂² = (x₁ + x₂)(x₁ - x₂)
Т.к. x ≤ 0, то x₁ + x₂ < 0, т.к. x₁ > x₂, то x₁ - x₂ > 0. Значит, y(x₁) - y(x₂) < 0, отсюда делаем вывод, что функция убывающая (при увеличении аргумента значение функции уменьшается). 
4,7(9 оценок)
Ответ:
Valensia59
Valensia59
25.05.2023
Для упрощения заменим tgx на, например, а. Неравенство примет вид:
(a-1)*(a^2 - (1/4)*a - 3/4) <= 0
Найдём нули (и одновременно точки смены знака) левой части:
Сначала рассматриваем первую скобку:
a - 1 = 0
a = 1
Теперь вторую скобку:
a^2 - (1/4)*a - 3/4 = 0
Обычное квадратное уравнение. Находим дискриминант:
D = (1/4)^2 - 4 *(-3/4) = 1/16 + 3 = 1/16 + 48/16 = 49/16 = (7/4)^2
Теперь корни:
a1,2 = (1/4 +- 7/4) / 2 = {1; -3/4}
Итого у нас есть обычный корень -3/4 и корень кратности два -1 - то есть в этой точке функция будет нулевой, но знак менять не будет. Наносим их на числовую ось, подставляем любое некое значение (пусть будет a=0 и ищем знаки функции):
(0-1)*(0^2 - (1/4)*0 - 3/4)  = -1*(-3/4) = 3/4
При а = 0, т.е. на интервале от -3/4 до 1, функция положительна. Значит слева от -3/4 она отрицательна (в этой точке знак меняется), а справа от 1 положительна (не меняется).
Возвращаемся к неравенству. Надо найти, где всё это меньше либо равно нулю. Это интервал от минус бесконечности до -3/4 включительно и отдельно точка 1.
Но это мы нашли интервалы для нашей замены a. А теперь вернёмся к х и проведём обратную замену. Получается совокупность неравенства и уравнения:
tg x <= -3/4
tg x = 1
Решаем неравенство:
Тут можно нарисовать единичную окружность и отложить эту область - чтобы тангенс был отрицательным, синус и косинус должны иметь разный знак (значит угол во второй либо четвёртой четверти), абсолютное значение синуса должен быть 3/4 от косинуса или менее. На единичной окружности это будет выглядеть как заштрихованная область. В письменном виде это можно выразить как:
х = [arctg -3/4; П] или [arctg -3/4; 2П]. Можно найти значения угла с таким тангенсом, но оно явно не обычное, нужны таблицы Брадисса или калькуляторы.
Решаем уравнение:
tg x = 1
x = arctg 1 = П/4 + ПN, где N = 0,1,2...
На единичной окружности это две точки друг напротив друга.
Общим решением будет совокупность решений неравенства (дающая два сектора окружности) и уравнения (дающая две точки).
Спрашивайте, если что непонятно.
4,5(47 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ