1) a) (2a^2-3a+1)-(7a^2-5a)=
2a^2-3a+1-7a^2+5a=
-5a^2+2a+1=
-6a^2+(a+1)^2
b) 3x(4x^2-x)=
12x^3-3x^2=
3x^2(4x-1)
2) a) 2xy-xy^2=xy(2-y)
b) 8b^4+2b^3=2b^3(4b+1)
3) 7-4(3x-1)=5(1-2x)
7-12x+4=5-10x
-12x+10x=5-7-4
-2x=-6
x=3
4) Дано:
6Б=х учеников
6А=х-2 учеников
6В=х+3 ученика
Всего в 3-х классах = 91 ученик
Найти, сколько учеников в каждом классе
х+х-2+х+3=91
3х+1=91
3х=90
х=30 ученика
х-2=28 учеников
х+3=33 ученика
ответ: 6А - 28 учеников: 6Б - 30 уч еников; 6В - 33 ученика
5) (x-1)/5=(5-x)/2+(3x)/4
4(х-1)/20=10(5-х)/20+5(3х)/20
4х-4=50-10х+15х
4х+10х-15х=50+4
-х=54
х=-54
6) 3x(x+y+c)-3y(x-y-c)-3c(x+y-c)=
3x^2+3xy+3xc-3xy+3y^2+3yc-3xc-3yc+3c^2=
3x^2+3y^2+3c^2=
3(x^2+y^2+c^2)
Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
Решение: ( b − 1 ) 2 ( b + 2 ) − 6 2 ( b − 3 ) + 3 = ( b − 1 ) 2 ( b + 2 ) − 36 ( b − 3 ) + 3 = Возведение в степень:
( b 2 − 2 b + 1 ) ( b + 2 ) − 36 ( b − 3 ) + 3 = Раскрытие скобок:
b 3 + b 2 ⋅ 2 − 2 b 2 − 4 b + b + 2− 36 b + 108 + 3 = b 3 − 39 b + 113
ответ: b 3 − 39 b +113