Основное правило: все неравенства, в которых присутствует множитель решаются только методом интервалов. Также только методом интервалов решаются дробные неравенства, если неизвестный множитель стоит в знаменателе.
1) Определим ОДЗ (область допустимых значений):
(
— любое число).
2) Приравняем неравенство к нулю и находим корни уравнения:
Если дискриминант меньше нуля, то парабола, которая исходит из данного уравнения не имеет общих точек с осью и, благодаря тому, что
положительный, то парабола будет находиться в положительных координатах оси ординат (ось
). В таком случае, при любом значении икса неравенство будет иметь смысл (потому что в нашем неравенстве стоит знак
, что правильно со значением уравнения. Если бы в таком неравенстве стоял бы знак
или
, то такое неравенство не имело бы смысла, так как сама парабола находиться в положительных значениях оси ординат).
ответ: (
— любое число).
Область определения (обозначается D(y)) функции находится следующим образом. Необходимо проанализировать функцию на наличие корней, знаменателей и логарифмов. Последний случай нас мало интересует, потому сразу перейдем к двум первым.
А именно: в знаменателе не должен быть ноль, а число под корнем не должно быть отрицательным.
На самом деле, первую строчку можно опустить, далее поймете почему).
Решая вторую строчку получаем:
Из этого следует, что x1≠-4, x2=-4, x3=1 (2 и 3 корни получились путем решения квадратного уравнения в числителе).
Далее методом интервалов находим промежутки, удовлетворяющие условию ≥0. Таким промежутком является [1;∞).
ответ: D(y)=[1;∞)
за три тетради и пять карандашей заплачено 7 р., а за пять таких же тетрадей и восемь карандашей заплачено 11р. 50 коп. Сколько стоила одна тетрадь и один карандаш? 3x+5y=7 5x+8y=11,5 5y=7-3x y=1,4-0,6x 5x+11,2-4,8x=11,5 0,2x= 0,3 x=1,5 стоит тетрадь, y=1,4-0,6*1,5 у=0,5 стоит карандаш