М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Romabl4
Romabl4
09.04.2023 15:19 •  Алгебра

Докажите что сумма n нечётных последовательных чисел делится на n завтра сдавать

👇
Ответ:
Stepan0305
Stepan0305
09.04.2023

Сумма n нечетных последовательных чисел это арифмитеческая прогрессия с первым членом 1 и разностью 2

a_1=1; a_n=2n-1; d=2;\\ S_n=\frac{a_1+a_n}{2}*n;\\ S_n=\frac{1+2n-1}{2}*n=n^2

так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

ОТКУДА МНЕ МОЖЕТ БЫТЬ ИЗВЕСТНО В КАКОМ КЛАССЕ УЧИШЬСЯ, ЕСЛИ ХАРАКТЕР ЗАДАЧИ ОЛИМПИАДНЫЙ?

 

вариант 2 (вывод формулы "вручную")

S=1+3+5+7+..+(2n-1)

S=(2n-1)+(2n-3)+...+7+5+3+1;

2S=1+3+5+7+..+(2n-1)+(2n-1)+(2n-3)+...+7+5+3+1=(1+(2n-1))+(3+(2n-3))+...=n скобок в каждой сумма равна числу 2n=n*2n=2n^2 (два єн в квадрате)

S=n^2

так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

вариант 3 (с использованием метода математической индукции)

Гипотеза. Ищем формулу

2*1-1=1=1=1^2

2*1-1+2*2-1=1+3=4=2^2

2*1-1+2*2-1+2*2-1=1+3+5=9=3^2

напрашивается формула 1+3+5+...+(2n-1)=n^2

Докажем методом математической индукции, что єто ИСТИННО.

База индукции n=1: 1=1^2 верно

Гипотеза индукции. Пусть при n=k: 1+3+5+...+(2k-1)=k^2

Индукционный переход. Докажем, что тогда утверждение истинно и при n=k+1

1+3+5+...+(2k-1)+(2k+1)=используем гипотезу=k^2+(2k+1)=используем формулу квадрата двучлена=(k+1)^2, что и требовалось доказать

По принципу математической индукции 1+3+5+...+(2n-1)=n^2.

так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

вариант4 (геометрический)

возьмем квадрат размерами 1*1 его площадь 1

возьмем достроем его 3 квадратами 1*1(их площадь 3*1*1=3), получится большой квадрат 2*2

(1+3=2*2)

возьмем достроим новый квадрат 5 квадратами 1*1(их площадь 5*1*1=5), получится большой квадрат 3*3

(1+3+5=)

и т.д.сумма площадей "маленьких n квадратов" равна площади большого квадрата n*n

1+3+5+...+(2n-1)=n^2

видим ,что так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

вариант 5, разобьем сумму на подсуммы первый с последним, второй с предоследним, и т.д., если количевство нечетных чисел нечетно среднее слагаемое само по себе

1+2n-1=2n делится на n

3+2n-3=2n делится на n

...

n/2-1+n/2+1=n делится на n

и ("особое слагаемое")

n делится делится на n

Каждое из слагаемых делится на n, значит и вся сумма делится на n

4,4(81 оценок)
Открыть все ответы
Ответ:
Chokoladik
Chokoladik
09.04.2023
Это уравнение с одним неизвестным с, только, как мне кажется, оно записано с ошибкой, здесь надо выражение 3с - 1 взять в скобки, потому что иначе получается, что на 14 надо делить (-1), а не (3с - 1):
Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение:
2с - (3с - 1) = 2 * 14         Открываем скобки:
2с - 3с + 1 = 28
-с = 27
с = -27
Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.
4,6(25 оценок)
Ответ:
Tegebotik
Tegebotik
09.04.2023
Разложим  трёхзначное число 4ab по разрядам, получим 400+10a+b
Переставим в трёхзначном числе цифру 4 на место единиц и разложим получившееся число по разрядам, получим 100a+10b+4
Вычтем из числа 4ab число ab4, получим:
(400+10a+b)-(100a+10b+4)=400+10a+b-100a-10b-4=396-90a-9b
По условию, данная разность равна 279.
Составим уравнение:
396-90a-9b=279
-90a-9b=-117 |:(-9)
10a+b=13
Заметим, что 10a+b - поразрядная запись числа 13, т.е. a=1 и b=3
Следовательно, 4ab - это число 413
                          ab4 - это число 134
Находим сумму полученных трёхзначных чисел: 
413+134=547
ответ: А) 547
4,8(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ