Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Что и требовалось доказать.