1) 0,8 * 5 - 5,6 = 4 - 5,6 = - 1,6
2) 5 * (- 6) - 7 * (- 5) = - 30 - (- 35) = - 30 + 35 = 5
3) а = 9 (см); b = 9 + х (см); Р = (а + b) * 2 = (9 + 9 + х) * 2 = 2х + 36
4) х (т) - до обеда; х - 5 (т) - после обеда; х + х - 5 = 2х - 5 (т) - всего привезли;
5) 7b - 3x + b + 2x = 8b - x
15t + (12 - 11t) = 15t + 12 - 11t = 4t + 12 = 4 * (t + 3)
3a + 5b - (2a - b) = 3a + 5b - 2a + b = 6b + a
9h + 9(2d - h) = 9h + 18d - 9h = 18d
6) 2у - (у - (у - (у + 7))) = у - 7
2у - (у - ( у - у - 7)) =
2у - (у - у + у + 7) =
2у - у + у - у - 7 =
3у - 2у - 7 =
у - 7
y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8