Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Характеристика мечтателя "Белые ночи " . Настенька - главная героиня произведения, она занимает основное место, благодаря ей развиваются все события. Она милая, доброжелательная,скромная,спокойная, чувственная и ранимая девушка.В начале знакомства с Мечтателем она показала себя с лучшей стороны, но внешность обманчива, и Мечтатель увлекается ей, хотя девушка сразу сказала: "на дружбу я готова. . . а вот влюбится нельзя вас!". Основные события происходят в конце повести, Настенька, обиженная на того человека, которого любит, делает необдуманный шаг, решаясь строить с Мечтателем планы на будущее, но все рухнуло, так же внезапно, как и начиналось. Мечтатель снова один, Настенька ушла, предав героя. Получив на утро письмо, молодой человек долго размышлял, но у него не было чувства грусти, а даже наоборот. Девушка долго не замечала чувств героя, да и потом просто "воспользовалась" этим, но тот факт, что она искренне любила другого человека частично извиняет её. В своем последнем письме она просила не забывать о ней и любить её.
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение: