Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
Данный многочлен можно разложить на множители группировки. Сгруппируем 1 и 2, 3 и 4 множители и выпишем их в отдельных скобках:
(bm+3b)+(2cm+6c). Теперь, из каждой скобки вынесем общий множитель. В 1 скобке это b, а во 2 - 2с. Вынесем данные множители и получим:
b(m+3)+2c(m+3). Теперь общее выражение m+3 вынесем в скобках отдельно, а остальное запишем в других скобках:
(m+3)(b+2c). Это наше разложение, оно является ответом.
Оформление в тетради должно выглядеть так:
bm+3b+2cm+6c=b(m+3)+2c(m+3)=(m+3)(b+2c).
Наименьшее трехзначное число, которое делится на 13, - это 104 = 8*13
Наибольшее трехзначное число, которое делится на 13, - это 988 = 76*13
все трехзначные числа, делящиеся на 13, - арифметическая прогрессия, в кот. d = 13
Сумма первых n членов арифметическое прогрессии - S = (a1 + an) / 2 * n
В нашем случае n = 76 - 8 + 1 = 69
S = (a1 + an) / 2 * n = (104 + 988) / 2 * 69 = 37674