Решение.
Пусть первый кран работал (n − 1)d + 8 часов, тогда второй кран работал (n − 2)d + 8 часов, ..., n-й кран — 8 часов. Тогда
дробь, числитель — (n минус 1)d плюс 8, знаменатель — 8 = дробь, числитель — 5, знаменатель — 1 равносильно (n минус 1)d=32,
(n минус 1)d плюс 8 плюс (n минус 2)d плюс 8 плюс ... плюс 8=d умножить на дробь, числитель — (n минус 1)n, знаменатель — 2 плюс 8n=16n плюс 8n=24n.
Получаем, что для заполнения сосуда требуется 24n часов работы. Если все краны открываются одновременно, то для пополнения всего сосуда потребуется дробь, числитель — 24n, знаменатель — n =24 часа.
Объяснение:
1) f(x) =x⁴ + 4·sin²x·cos²x - чётная функция
2) f(x) =x⁴ + 4·sin²x·cos²x - нечётная функция
Объяснение:
Определение. Функция f(x), x∈X, называется чётной, если для любого значения x из множества X выполняется равенство: f(–x) = f(x).
Определение. Функция f(x), x∈X, называется нечётной, если для любого значения x из множества X выполняется равенство: f(–x) =–f(x).
Известно, что функция:
sinx – нечётная, cosx - чётная, tgx – нечётная, ctgx – нечётная.
Решение.
1) Функция f(x) =x⁴ + 4·sin²x·cos²x определена при всех x∈R. Проверим по определению при x∈R:
f(–x) = (–x)⁴ +4·sin²(–x)·cos²(–x) = x⁴ +4·(–sinx)²·cos²x =
= x⁴ +4·sin²x·cos²x = f(x), то есть f(–x) = f(x) и функция – чётная;
2) Функция f(x) = (tgx – ctgx)/cosx определена при всех x∈X=R\{πn, π/2+πk, n∈Z, k∈Z}. Проверим по определению при x∈X:
f(–x) = (tg(–x) – ctg(–x))/cos(–x) = (–tgx –(–ctgx))/cosx =
= –(tgx – ctgx)/cosx = –f(x), то есть f(–x) = –f(x) и функция – нечётная.