3√(3x² + 2x - 4) - 2x = 3x² - 2
3√(3x² + 2x - 4) = 3x² + 2x - 2
ограничения 3x² + 2x - 4 >= 0
D = 4 + 4*4*3 = 4 + 48 = 52
x12 = (-2 +- √52)/6 = (-1 +- √13)/3
(-1 +- √13)/3 (-1 + √13)/3
x ∈ (-∞, (-1 +- √13)/3] U [(-1 +- √13)/3, + ∞) ≈ (-∞, -4.6/3] U [2.6/3, +∞)
3√(3x² + 2x - 4) = (3x² + 2x - 4) + 2
√(3x² + 2x - 4) = t (>=0)
3t = t² + 2
t² - 3t + 1 = 0
t1 = 1
t2 = 2
1. t1 = 1
√(3x² + 2x - 4) = 1
3x² + 2x - 4 = 1
3x² + 2x - 5 = 0
D = 4 + 4*5*3 = 64
x12 = (-2 +- 8)/6 = 1 - 5/3
2. t2 = 2
√(3x² + 2x - 4) = 2
3x² + 2x - 4 = 4
3x² + 2x - 8 = 0
D = 4 + 4*8*3 = 100
x12 = (-2 +- 10)/6 = 4/3 - 2
ответ x = {-2, -5/3, 1, 4/3}
Объяснение:
2) sinx, cosx=-4\5
По основному тригонометрическому тождеству:
sin^2x+cos^2x=1
sin^2x=1-cos^2x
sin^2x=25\25-16\25
sin^2x=9\25
sinx=3\5 (знак "+" потому, что синус в 1 и 2 четверти принимает положительные значения)
3) log2(16)*log6(36)=4*2=8
5) (1\6)^6-2x=36
(1\6)^6-2x=(1\6)^-2
Поскольку основания одинаковые, приравняем степени:
6-2x=-2
-2x=-8 | :(-2)
x=4
6) sinx=√2\2
x=(-1)^n*π\4+πn, n - целое
8) log√3(x)+log9(x)=10
2log3(x)+1\2log3(x)=10
2.5log3(x)=10 | :2.5
log3(x)=4
x=3^4
x=81
4) Вынесем 81 из-под корня:
(9√7√b)/14√b
Вынесем корень 7 степени из-под квадратного корня:
9*(14√b)\14√b
Сократим корень 14 степени из b, поскольку по условию b>0, значит знаменатель не может быть 0
9
1) y=f(x)
Наибольшее значение функции - наивысшая точка по оси Y, значит 7