y = f(x)
f'(x) = (x^2 + 10x + 25)' * (2x - 10) + (x^2 + 10x + 25) * (2x - 10)' + 9' =
= (2x + 10 + 0) * (2 - 0) + (x^2 + 10x + 25) * (2 - 0) + 0 =
= 2*(2x+10) + 2(x+5)^2 = 4(x+5) + 2(x+5)^2 = 2(x+5)(2 + x + 5) =
= 2(x+5)(7+x) - производная нашей функции, приравниваем её к нулю:
2(x+5)(7+x) = 0
x+5 = 0 и 7+x = 0
x = -5 x = -7
Отмечаем полученные корни на координантной прямой:
+ - + x
оо>
-7 -5
Точка максимума - это x=-7, так как производная f'(x) возрастает до -7, а потом убывает. Точка x=-5 - точка минимума.
y=(-7+5)^2(-7-5) + 9 = 4*(-12) + 9 = -48 + 9 = -39
Получается, что в точке (-5;-39) эта функция достигает своего максимума.
1. кор(3-х) - х - 3 = 0
кор(3-х) = х+3 х прин [-3; 3].
3-х =x^2+6x+9
x^2 + 7x + 6 = 0
x1 = -6 (не подходит)
х2 = -1
ответ: -1
2. x^2 + 3x + 1 = y
y^2 + 3y + 1 = x Вычтем из первого второе и разложим на множители:
(х-у)(х+у+4) = 0
Разбиваем на две подсистемы:
х=у и: у = -х-4
x^2 + 3x + 1 = x x^2 + 3x + 1 = -x-4
x = y = -1
(x+1)^2 = 0 x^2 + 4x + 5 = 0
D<0 нет решений.
ответ: (-1; -1).