1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
15 грамм
Объяснение:
Обозначим первоначальную массу раствора как "х" грамм, тогда масса соли в этом растворе будет равна "0,3х" грамм.
После того как в раствор добавили 90 грамм соли, его масса стала равной "х + 90" грамм, а новая масса соли равна "0,7 * (х + 90)" или "0,3х + 90".
Составим уравнение.
0,7 * (х + 90) = 0,3х + 90,
0,7х + 70 = 0,3х + 90,
0,4х = 20,
х = 20 / 0,4 = 50 грамм.
Первоначальная масса раствора была 50 грамм.
50 * 30% = 50 * 0,3 = 15 грамм соли было в растворе первоначально.