Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Скорость третьего Х отрывается все от временной точки, когда третий догонит второго (время t) (первый ехал на 1 час больше (t+1) третий на один час меньше (t-1), это когда 15*t=X*(t-1) (их пройденные пути выравняются) второе уравнение 21*(t+9+1)=X(t+9-1) итого система 15t=Xt-X -> 15t-Xt=-X -> t(15-X)=-X -> t=-X/(15-X) =X/(X-15) 21t+210=Xt+8X (во второе подставим t) 21X/(X-15)+210=(X^2)/(X-15)+8X избавляемся от знаменателя (Х-15) 21X +210(X-15)=X^2+8X(X-15) 21X+210X-3150=X^2+8X^2-120X все вправо 9x^2-351x+3150=0 (сократим на 9) x^2-39x+350=0
D=1521-1400=121 (корень 11) x1=(39+11)/2=25 x2=(39-11)/2=14 (заведомо неверный, поскольку его скорость явно выше скорости первого (21), раз он его догнал) итого Х=25 км/ч
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение: