М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PavelSol
PavelSol
01.11.2022 15:36 •  Алгебра

ПЛ


1.Применение ……. позволяет у преобразования
выражений.
2. Куб разности двух выражений равен кубу первого
выражения минус ……. на второй плюс утроенное
произведение первого выражения на квадрат второго минус
куб второго выражения”.
3. Для упрощения данного выражения (4 – 5а) 2 – 6а(3а + 1) +
+(7а–2)(2 + 7а). воспользуемся формулами квадрата разности
и разности квадратов, …., а затем приведем…...
4. Чтобы найти разность дробных выражений с разными
знаменателями, нужно……., а затем найти их разность как
разность дробных выражений с одинаковыми знаменателями:
5. Равенство, верное при всех допустимых значениях переменных
называют …….
6. Замену одного выражения другим, ……….ему, называют
тождественным преобразованием.
7. Выражения , составленные из…….. сложения, вычитания,
умножения и возведения в степень называют целыми
выражениями.
8. При изменении знака дроби нужно …………… этой дроби.
9. Чтобы………, нужно перемножить отдельно их числители и
знаменатели и первое произведение записать числителем, а
второе – знаменателем.
10. Чтобы разделить одно дробное выражение на другое, нужно
делимое умножить на дробь, …….

👇
Открыть все ответы
Ответ:
43446764949
43446764949
01.11.2022
{3x+y=10    x²-y=8 y=10-3x      x²-(10-3x)=8                     x²+3x-10-8=0                     x²+3x-18=0             d=9+4·18= 81                   x1=(-3+9)\2=3                   x2=(-3-9)\2=-6 x1=3                        x2=-6 y1=10-3·3=1            y2=10-3·(-6)=28 ответ: (3; 1); (-6; 28)   
4,6(78 оценок)
Ответ:
Riek
Riek
01.11.2022

Задание № 1:

Сколько цифр в записи значения произведения пятой степени числа 8 и семнадцатой степени числа 5?

8^5*5^17=(2^3)^5*5^17=2^15*5^17=2^15*5^15*5^2=10^15*25=25*10^15

проще говоря, 25 и еще 15 нулей или 17 цифр

ответ: 17

 

Задание № 2:

При каком значении параметра a пара уравнений равносильна?

1) ax−a+3−x=0;                 

2) ax−a−3−x=0.

равносильна - значит множества корней уравнений совпадают

первое:

ax-a+3-x=0

ax-x=a-3

(a-1)x=a-3

второе:

ax−a−3−x=0

ax−x=a+3

(a-1)x=a+3

если а=1, то оба уравнения не имеют корней: получим уравнение 0х=b, где b не ноль

если а<>1, то первое уравнение имеет корень (a-3)/(а-1), а второе (a+3)/(а-1). эти корни ни при каких а не совпадут

ответ: 1


Задание № 3:

Сколько целых неотрицательных решений имеет уравнение: 3x+4y=30?

чтобы было побыстрее заметим, что 4у должно делиться на 3

у=0: 3х=30; х=10 - ПОДХОДИТ

у=3: 3х+12=30; 3х=18; х=6 - ПОДХОДИТ

у=6: 3х+24=30; 3х=6; х=2 - ПОДХОДИТ

у=9: 3х+36=30; 3х=-6; х=-2 - НЕ ПОДХОДИТ (-2 не целое неотрицательное)

дальнейшие решения для х будет еще меньше

всего три решения

ответ: 3


Задание № 4:

В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько красных яблок во второй корзине?

получаем, что яблок в первой корзине делится на 9, а число яблок во второй корзине делится на 17

9х+17у=79

х=1: 9+17у=79; 17у=70; у не целое

х=2: 18+17у=79; 17у=61; у не целое

х=3: 27+17у=79; 17у=52; у не целое

х=4: 36+17у=79; 17у=43; у не целое

х=5: 45+17у=79; 17у=34; у=2

х=6: 54+17у=79; 17у=25; у не целое

х=7: 63+17у=79; 17у=16; у<1

значит в первой корзине 9*5=45 яблок, во второй - 17*2=34, (9/17)*34=18 красных яблок

ответ: 18


Задание № 5:

Периметр равнобедренного треугольника 20 см. Одна из его сторон вдвое больше другой. Найдите основание равнобедренного треугольника. Дайте ответ в сантиметрах.

если боковая сторона х, а основание 2х, то не выполняется неравенство треугольника (основание есть две боковые стороны)

значит основание х, боковая сторона 2х

х+2х+2х=20

5х=20

х=4

ответ: 4

 


Задание № 6:

В коробке 6 красных, 7 зелёных, 8 синих и 9 жёлтых карандашей. В темноте из коробки берут карандаши. Какое наименьшее число карандашей надо взять, чтобы среди них обязательно было 2 красных или 2 жёлтых карандаша?

худший случай: сначала вытащили все карандаши других цветов (7 зеленых + 8 синих = 15), затем по одному из подходящих цветов (1 красный + 1 желтый = 2), потом второй подходящего цвета

итого: 15+2+1=18

ответ: 18


Задание № 7:

Из посёлка в город идёт автобус, и каждые 10 минут он встречает автобус, который идёт из города в посёлок, и скорость которого в 2 раза больше. Сколько автобусов в час приходит из города в посёлок?

надо найти, как часто встречался бы встречный автобус, если этот автобус затормозил

наша скорость х

скорость встречного 2х

общая скорость 3х

при общей скорости 3х интервал времени 10 минут: L=3х*10

если наш автобус встал, то общая скорость равна скорости встречного 2х

при общей скорости 2х интервал времени = L/2x=3х*10/2x=15 минут

значит и в поселок автобус приходит каждые 15 минут, то есть 60мин/15мин = 4 автобуса в час

ответ: 4

4,5(9 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ