2) 4y^2 - 9y+48=0 D = 81-768=- 687 действительных корней нет 1) 4y^2 - 25y + 100=0 D = 625-1600, D<0 действительных корней нет 3) из условия знаменателя: х не равен -3 и 1/2. Далее по условию равенства нулю дроби: (x+3)(x-2)=0 x+3=0 или x-2=0 x=-3 x=2 ответ: 2 (так как -3 не подходит по условию знаменателя) 4) Приведем к общему знаменателю: (16(x^2-9)+x^2(x-6)-x^2(x+3))/(x^2(x^2-9)) = 0 x не равен 0, 3 и - 3 16(x^2-9)+x^2(x-6)-x^2(x+3)=0 16x^2-144+x^3-6x^2-x^3-3x^2=0 7x^2=144 x1=12/√7 x2=- 12/√7
Имеем уравнение вида
f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает наименьшее значение, равное 1при х=2.
х=2- единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.
О т в е т. х=2
б)cos(cosx)=1
cos x=2πn, n∈ Z
Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1, n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.
Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.
О т в е т. x=(π/2) + πk, k∈Z.