В решении.
Объяснение:
Решить систему уравнений:
1) у = 5х + 1
у = 5х - 2
Приравнять правые части (левые равны):
5х + 1 = 5х - 2
5х - 5х = -2 - 1
0 = -3
Система не имеет решений.
2) 2х + 5у + 2 = 0
х + у + 4 = 0
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х = -у - 4
2(-у - 4) + 5у = -2
-2у - 8 + 5у = -2
3у = -2 + 8
3у = 6
у = 2;
х = -у - 4
х = -2 - 4
х = -6.
Решение системы уравнений (-6; 2).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
x∈[-6, 1)
Объяснение:
-4<-4x≤24;
Двойные неравенства решаются системой:
-4< -4x
-4x<=24
Первое неравенство:
-4< -4x
4х<4
x<1
x∈ (-∞, 1) интервал решений первого неравенства.
Неравенство строгое, скобки круглые.
Второе неравенство:
-4x<=24
x>= -6
x∈[-6, +∞) интервал решений второго неравенства.
Неравенство нестрогое, скобка квадратная.
Пересечение (решение системы неравенств) x∈[-6, 1)