Пусть скорость первого х км/ч., тогда скорость второго (х+7)км/ч, превратим эту скорость в м/мин. Известно, в 1км 1000м, в часе 60мин., поэтому
1км/ч=1000м/60мин=50/3(м/мин.)
По условию стартовали одновременно, разница в расстоянии составляла 500м, когда первый пробежал 15минут со своей скоростью, а второй 10 мин. (15-5=10/мин./)со своей . Путь первого составил х*(50/3)*15=750х/3; а второго (х+7)*(50/3)*10=(х+7)*500/3. По условию задачи составим и решим уравнение.
Tgx-sqrt(2)*|sinx|=0. Рассмотрим промежуток [-2pi;pi/4] по отношению к |sinx|. На [-2pi;-pi] |sinx|=sinx (так как sinx положителен). На [-pi;0] |sinx|=-sinx, так как sinx отрицателен. И на [0;pi/4] |sinx|=sinx. Решим две задачи и объединим их решения: 1. tgx-sqrt(2)*sinx=0 на промежутках [-2pi;-pi] и [0;pi/4] 2. tgx+sqrt(2)*sinx=0 на промежутке [-pi;0].
1. tgx-sqrt(2)*sinx=0 sinx/cosx-sqrt(2)*sinx=0. ОДЗ Cosx<>0. Разделим обе части уравнения на sinx. 1/cosx-sqrt(2)=0 1/cosx=sqrt(2) cosx=1/(sqrt2) x=2pi*N(+-)1/4pi. Решения на нашем промежутке: x=pi\4; x=-7/4pi. 2. cosx=-1/(sqrt2) x=2pi*N(+-)3/4pi. Решение на промежутке [-pi;0] x=-3/4pi.
Заметим, что одно из решений это x=0 т.к. в 0 и tgx=0 и sinx=0. Имеем 4 решения: x=-7/4pi; x=-3/4pi; x=0; x=pi/4;
Пусть скорость первого х км/ч., тогда скорость второго (х+7)км/ч, превратим эту скорость в м/мин. Известно, в 1км 1000м, в часе 60мин., поэтому
1км/ч=1000м/60мин=50/3(м/мин.)
По условию стартовали одновременно, разница в расстоянии составляла 500м, когда первый пробежал 15минут со своей скоростью, а второй 10 мин. (15-5=10/мин./)со своей . Путь первого составил х*(50/3)*15=750х/3; а второго (х+7)*(50/3)*10=(х+7)*500/3. По условию задачи составим и решим уравнение.
(х+7)*500/3-750х/3=500; (х+7)*500-750х=500*3; 500*(х+7-3)-750х=0;
500*(х+4)-750х=0; 500х+2000-750х=0; 750х-500х=2000; 250х=2000; х=8
Значит, скорость первого бегуна 8км/ч или 8*50/3=400/3=133 и 1/3 м/мин.