у=2х-5 3(1-у)-у=2 т.е. 3-2у=2 у=1/3
Объяснение:
Примем за х первый член из искомой группы, за к - коэффициент прогрессии.
Условие сумма обратных величин равна 7/12 можно записать:.
Приведя к общему знаменателю, получим:
.
Имеем две равные дроби, значит, числители и знаменатели их равны между собой.
к² + к + 1 = 7
Квадратное уравнение к² + к - 6 = 07, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:
к_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;
к_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
к²х = 12 х = 12 / к²
х₁ = 12 / 4 = 3
х₂ = 12 / 9 = 4 / 3.
Получили 4 последовательности:
1) 3, 6, 12 их сумма равна 21,
2) 3, 4, 16/3 их сумма не равна 21,
3) 4/3, 8/3, 16/3 их сумма не равна 21,
4) 4/3, -12/3, 12 их сумма не равна 21.
Условию задачи отвечает 1 вариант.
На подобе
Объяснение:
1) Точки пересечения с осями.
- с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
- с осью Ох: у = 0.
x^3+x^2-16x-16 = 0.
Преобразуем заданное уравнение:
у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
у = 0, (х-4)(х+4)(х+1) = 0.
Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.
2) Для того, чтобы найти экстремумы, нужно найти производную и приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;
x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.
Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).
3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х = -3 -2.667 -2 1 2 3
у' = 5 0 -8 -11 0 17.
Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).
Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,
а убывает на промежутке (-8/3) < x < 2.
4) Найдем точки перегибов, для этого надо решить уравнение
y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,
первое 4
Объяснение:
второе 2
третье сейчас решу