task/29847784
1 . Напишите уравнения касательных к графику функции у=2x²-x+3 проходящих через его точку а) А(-1 ; 6) , б) D (0 : 3)
решение. Уравнение касательной к графику функции y =f(x) в точке проходящей через его точку M (x₀ ; f(x₀) ) имеет вид y - f(x₀) = f '(x₀)*(x - x₀ ) иначе по другому y =y '(x₀)*(x - x₀ )+ y₀
y ' =(2x²-x+3) ' = 4x -1 .
а) y₀ = 2*(-1)² - 1 + 3 = 4 ; y ' (-1) = 4*(-1) -1 = - 5 ⇒ y = -5*(x +1)+4⇔ y = - 5x - 1 .
б) y₀ = 2*0² - 0 + 3 = 3 ; y ' (-0) = 4*0 - 1 = - 1 ⇒ y = -1*(x -0) +3⇔ y = - x +3 .
2. найдите угол φ между касательными ,проведенными к графикам функции у=2x²-3 и у=2x²- x+3 в точку их пересечения
решение. Определим точку P(x₀;y₀) _пересечения графиков данных функций
{ у=2x²-3 ; у=2x²- x+3 . 2x²- 3 =2x² - x + 3 ⇔ x=6 ⇒ y =2*6² -3 =69. P(6 ; 69)
y ' = (2x²-3 )' = 4x ⇒ k₁ = tgα = 4x₀ =4*6 = 24 ;
y ' = (2x²- x +3 )' = 4x -1 ⇒ k₂ =tgβ =4x₀-1 =4*6 -1= 23 .
tqφ =(k₁ - k₂)/(1+k₁k₂) =1 / (1 +24*23)= 1/553 ⇒ φ =arctg(1/553) .
task/29916224
1. sin2x = sin(x -π/3) ⇔sin2x + sin(π/3 -x) ⇔2sin(x/2 +π/6)*cos(3x/2 -π/6) =0⇔
[ sin(x/2 +π/6) =0 ; cos(3x/2 -π/6) =0 .⇔ [ x/2 +π/6 =πn ; 3x/2 -π/6 =π/2 + πn , n∈ ℤ .⇔
[ x= - π/3 + 2πn ; x =4π/9 + (2π/3)*n , n∈ ℤ .
2. cos(x - π/6) = cos(π/5) ⇔ cos(x - π/6) - cos(π/5) =0 ⇔
-2sin( (x-π/6-π/5)/2 )*sin( (x-π/6+ π/5)/2) =0⇔ sin( (x-11π/30) /2)*sin((x+π/30)/2)=0 ⇔
[ sin( (x-11π/30) /2) =0 ; sin((x+π/30)/2)=0.⇔[ (x-11π/30)/2 =πn ; (x+π/30)/2=πn , n∈ ℤ ⇔
[ x = 11π/30 +2πn ; x = - π/30 +2πn , n∈ ℤ .
3. cos2x = sin(π/3 +x) ⇔ cos2x = cos(π/2 -(π/3 +x) ) ⇔cos2x - cos(π/6 -x) =0 ⇔
-2sin( (3x -π/6) /2) *sin( ( x +π/6) /2) =0⇔ [sin( (3x -π/6) /2) =0 ;sin( ( x +π/6) /2)=0.⇔
[ ( 3x -π/6)/2 =πn ; (x +π/6)/2 =πn, n∈ ℤ⇔ [ x=π/18+(2π/3)*n ; x = - π/3 +2πn ,n∈ ℤ.
* P.S. sinα+sinβ=2sin((α+β)/2)*cos((α- β)/2) ; cosα-cosβ = -2sin((α- β)/2)*sin((α+β)/2) ; sinα =cos(π/2 - α) .