Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
Ну тут все просто) Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям) а) x=3, y=1 Проверка: 3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения б) x=6, y=2 Проверка: 6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго в) x=5, y=3 Проверка: 5-3=2 и 5+3=8, являются решением и первого, и второго уравнения г) x=8, y=2 Проверка: 8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
1)Решение системы уравнений (4; 1);
2)Решение системы уравнений (-1; -2).
Объяснение:
Решить систему уравнений сложения:
1)х+2у=6
3х-4у=8
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
5х+2у= -9
2у= -9-5х
2у= -9-5*(-1)
2у= -9+5
2у= -4
у= -4/2
у= -2
Решение системы уравнений (-1; -2)