Пусть x ч-время работы первой трубы, y ч-время работы второй трубы. Тогда 1/x - производительность первой трубы, 1/y - производительность второй трубы. Составим первое уравнение системы: 1/x+1/y=1/14. 1,5/x - новая производительность первой трубы. Составим второе уравнение системы: 1,5X+1/y=1/12/ Составим систему уравнений: 1/x+1/y=1/14 1,5/x+1/y=1/12 Решим алгебраического сложения. Вычтем из первого уравнения второе. Получим: -0,5/x+0=1/14-1/12 -0,5/x=6/84-7/84 -0,5x=-1/84 x=0,5*84 x=42 Значит, время работы первой трубы - 42 часа. Тогда подставим вместо х 42 в первое уравнение системы, получим: 1/42+1/y=1/14, 1/y=1/14-1/42, 1/y=3/42-1/42, 1/y=2/42, 1/y=1/21, y=21. Значит, работая отдельно, вторая труба наполнит бассейн за 21 час. ответ: 21 час.
ответ: V(катера)=4,5 км/час , V(течения)=1,5 км/час .
Скорость катера = х км/час , скорость течения реки = у км/час .
Скорость катера по течению = (х+у) км/час .
Скорость катера против течения = (х-у) км/час .
Скорость катера по течению в 2 раза больше скорости катера против течения , поэтому (х+у) = 2*(х-у) , х+у=2х-2у , 3у=х .
В стоячей воде за 4 часа катер х км .
За 2 часа по течению катер х+у)=2*(3у+у)=2*4у=8у км .
Так как в стоячей воде катер на 4 км больше, чем по течению, то получаем уравнение
4х-6=8у , 4х-8у=6 , 4*3у-8у=6 , 4у=6 ,
у=6/4=3/2=1,5 км/час - скорость течения
х=3*(3/2)=9/2=4,5 км/час - скорость катера