все просто тут две дроби приводят к общему знаменателю: у 2 и 9 - это 18, потом мы узнаем "дополнительные множители", то есть общий знаменатель делим на знаменатель каждой дроби: 18:2=9 - дополнительный множитель первой дроби, 18:9=2 - дополнительный множитель второй дроби. теперь мы и числитель, и знаменатель каждой дроби умножаем на её дополнительны множитель: 1×9=9 - числитель первой дроби, 2×9=18 - знаменатель первой дроби; 3×2=6 - числитель второй дроби, 9×2=18 - знаменатель второй дроби. потом мы из числителя первой дроби вычитем числитель второй дроби: 9-6=3 - числитель новой дроби, а знаменатель оставляем прежний, и у нас получается 3/18, но мы можем сократить на 3, и получаем: 3:3=1, 18:3=6, в итоге мы получаем дробь 1/6
1) Решить систему линейных уравнений (СЛУ) – это значит найти упорядоченный набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство (тождество). Кроме того, система может не иметь решений , то есть быть несовместной.
2) Решение СЛУ с двумя неизвестными представляет собой пару значений двух переменных (х,у) , который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений).
3) Система может иметь более одного решения. И если система имеет более одного решения, то таких решений бесчисленное множество .
4) Система может не иметь решения, то есть она будет несовместной.
5) Графический метод решения СЛУ с двумя переменными состоит в том, чтобы начертить графики двух заданных уравнений (это будут прямые). Затем уже по графикам можно делать выводы о количестве решений системы и нахождении их, если они существуют.
6) Если СЛУ с 2 переменными имеет единственное решение, то графики прямых пересекаются в одной точке .
7) Если СЛУ с 2 переменными не имеет решений, то графики прямых параллельны.
8) Если СЛУ с 2 переменными имеет бесчисленное множество решений, то графики прямых совпадают.