Пусть одна диагональ равна 2х, другая - 2у, тогда 2х+2у=24 и х+у-12, откуда у=12-х.
Диагонали ромба пересекаются под прямым углом, таким образом, площадь ромба состоит из 4-х прямоугольны треугольников с катетами х и у, т.е. площадь ромба S=4*0.5xy=2xy.
Подставим сюда у=12-х и получим S=24x-2x^2.
Найдём максимум этой функции. S'= 24-4x.
Стационарная точка: 24-4х=0 х=6
При х=7 S'<0; при х=5 S'>0, следовательно при х=5 имеем максимум S.
у=12-х=12-6=6.
Тогда Smax=2*6*6=72.
Интересно, что получился квадрат с диагоналями, равными 12.
0,2,1/4,8/5,-3/2
Объяснение:
Заметим, что если подставим вместо переменной икс тоЮ к чему она стремится, везде(кроме второго) получим неопределенность 0/0. Такая неопределенность раскрывается либо правилом Лопиталя, но это обычно неприемлимый , либо выделением общих множителей. Итак,
1)x^2-8x+16=(x-4)^2
x^2-16=(x-4)(x+4) сократим на х-4, то х-4/х+4, подставим вместо х, то к чему он стремится, и получим 0/8, а это нуль
3)x-4=(√x-2)(√x+2), сокращаем на√x-2, получаем 1/4
4) сразу ничего очевидного нет, но мы не сдаемся, вынесем из числителя х, тогда х(4-x^2)=x(2-x)(2+x) а знаменатель разложим на множители, для этого приравняем его к нулю и найдем корни любым удобным , тогда получим корни -2 и 0.5, а значит изначальный знаменатель можно расписать как 2(x+2)(x-0,5) и вот уже видим на что можно сократить (х+2). Подставим вместо икс то, к чему он стремится, тогда -8/-5=8/5
7) sinα-sinβ=2sin(α-β)/2*cos(α+β)/2, вместо альфа 2х, вместо бетта 8х, следовательно, 2sin(-3x)*cos(5x), минус из синуса выносим как нечетность, тогда -2sin(3x)*cos(5x)/4x , теперь вычисляем как стандартный предел по частям, тогда получим 3/2 да еще минус от нечестности, -3/2
2) а теперь с бесконечность делить на бесконечность, нужно разделить на старшую степень числитель и знаменатель дроби, старшая степень 4, тогда
2+1/x+1/x^4 разделим на 3/x^2+1, теперь при подстановке вместо х бесконечности получим везде нули, кроме 2/1, а значит предел равен 2
якщо це не -4 то : 12 та 8 !!