Пусть второй рабочий в час делает х деталей, тогда первый рабочий в час делает х+3 детали Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов, тогда второй рабочий на производство 150 деталей затрачивает 150/х часов Составим уравнение: 150/х-112/(х+3)=2 150/х-112/(х+3)-2=0 Общий знаменатель х(х+3), тогда (150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение: 150х+450 -112х-2х²-6х=0 32х-2х²+450=0 (умножим на -1) 2х²-32х-450=0 (сократим на 2) х²-16х-225=0 Найдем дискриминант: D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156 х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25 х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит ответ: Второй рабочий в час изготовляет 25 деталей.
Подмодульные выражения обращаются в нуль
1)
2)
Эти точки разбивают числовую прямую на 4 промежутка
Раскрываем знак модуля на каждом из промежутков
(-∞;-6]
Уравнение принимает вид:
не принадлежит рассматриваемому промежутку, значит уравнение не имеет корней на (-∞;-6)
(-6;-3]
Уравнение принимает вид:
не принадлежит рассматриваемому промежутку, значит уравнение не имеет корней на (-6;-3)
(-3;-2]
Уравнение принимает вид:
принадлежит рассматриваемому промежутку(-3;-2] , значит уравнение имеет корень х=-2
(2;+∞)
Уравнение принимает вид:
уравнение верно при любых x∈(2;+∞)
О т в е т. {2} U (2;+∞) =[2;+∞)