Объяснение:
Сделаем замену переменных:
также сразу заменим пределы интегрирования, чтобы не возвращаться к обратной замене:
нижний предел:
Верхний предел:
Получаем:
Полученный интеграл не является табличным, поэтому для его решения нужно упростить знаменатель:
Когда в знаменателе стоят выражения 1) 1+x² или 2) 1-x² применяют тригонометрическую или гиперболическую замены.
Для первого случая применяют (на выбор): x=tgt; x=ctgt; x=sht.
Для второго: x=sint; x=cost
В нашем случае применим замену (да, еще одну, такое тоже бывает!)
Также заменим пределы интегрирования:
Итого имеем:
Учитывая, что 1+tg²z=1/cos²z; tg²z=sin²z/cos²z; 2sin²z=1-cos(2z)
Получаем:
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1