Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
Рисуешь числовую окружность радиусом, равным 1 и на оси х отмечаешь точку с координатой 0,5 через эту точку проводишь вертикальную линию вверх до пересечения с окружностью. Автоматически получаешь точку с у-координатой √3/2.
Теперь давай посчитаем, какому углу она соответствует.
Если разделить верхнюю половину окружности на 3 части, то твоя точка как раз совпадёт с 1/3 полуокружности. Поскольку полуокружность соответсвует углу, равному π(180 градусов), то твоя точка соответствует π/3 (60°).
Это если отсчитывать от оси х в положительную сторону (против часовой стрелки).
А если отсчитывать в отрицательную сторону (по часовой стрелке, то мы пройдём 1/2 окружности и ещё 2/3 её. Половина окружности (я уже говорила) соответствует π, а 2/3 соответствует 2π/3, и всё это со знаком "-"!!
Всего получается -π- 2π/3 = -5π/3 (-300°)
ответ: наименьший положительный угол π/3 (60°)
наибольший отрицательный угол -5π/3 (-300°)
Условие:
L=33
V1=4
t3=1/4
V2=12
l1=?
l2=?
T=?
Пешеход вышел когда время было на 0 и начало отсчёт. Ко времени выезда велосипедиста минут а значит пешеход приблизился на 1 км. Т.е в момент когда начали движение оба минут и общее расстояние осталось 32 км.
32=16x
x=2 ч
T=x+t3=2 ч 15 мин
l1=12*2=24 км
l2=4*2.25=9 км