||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
0,5х-2у=0 х-у-3=0
0,5х=2у у=х-3
у=0,25х
Теперь подставляем вместо х любое число,находим у и строим графики.Например:
0,25*0=0 (х=0,у=0)
0,25*4=1 (х=4,у=1) и т.д.
Так же и со вторым уравнением:
0-3=-3 (х=0,у=-3)
5-3=2 (х=5,у=2) и т.д.
Когда построите эти графики,они пересекуться в точке(4;1).Можно доказать это и по другому.Приравняем правые части наших уравнений:
0,25х=х-3
х-0,25х=3
0,75х=3
х=4
Подставим это значение в наши уравнения и найдем у:
0,25*4=1 и 4-4=1, т.е. у в обоих случаях=1
ответ: (4;1)