1. Определи угол между диагоналями, которые находятся в соседних гранях куба и имеют общий конец:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть такой треугольник, который образован из двух данных диагоналей и еще одной, которая соединяет концы данных диагоналей.
У куба все грани — равные квадраты, диагонали которых одинаковы. Треугольник равносторонний, и угол между DC1 и DB равен 60°.
2. Определи угол между диагоналями, которые находятся в соседних гранях куба и не имеют общий конец:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть диагонали 1 и 2. Они скрещивающиеся, поэтому переместим их в одну плоскость, передевигая диагональ 2 на 3.
Получилась уже рассмотренная ситуация, и угол между BD и AD1 равен 60°.
3. Определи угол между диагоналями, которые находятся в противоположных гранях куба, но не параллельны:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть диагонали 1 и 2. Они скрещивающиеся, поэтому переместим их в одну плоскость, передевигая диагональ 2 на 3.
У куба все грани — квадраты, диагонали квадрата перпендикулярны, и угол между DA1 и BC1 равен 90°.
Решение: Высота, опущенная на гипотенузу, делит прямоугольник на два прямоугольных треугольника, где два отрезка гипотенузы прямоугольного треугольника являются проекциями катетов основного прямоугольного треугольника и кроме того они являются катетами двух образовавшихся прямоугольников. Рассмотрим один из прямоугольных треугольников, где высота, опущенная на гипотенузу является катетом (72дм), катет прямоугольника (120дм) является гипотенузой получившегося прямоугольника. По теореме Пифагора найдём другой катет (c) одного из прямоугольников: c²=120²-72² c²=14400-5184 c²=9216 c=√9216=96 (дм) - это одна из проекций катета (первого образовавшегося прямоугольного треугольника) Найдём проекцию второго катета основного прямоугольника: для этого воспользуемся свойством высоты, проведённой к гипотенузе, "высота, проведённая к гипотенузе, есть средне-геометрическое между проекциями катетов гипотенузы." Обозначим проекцию второго катета за (d) Отсюда: 72=√(96*d) 72²=96d 5184=96d d=5184 : 96 d=54 (дм-проекция второго катета) Найдём гипотенузу основного прямоугольника. Она равна сумме двух проекций катетов прямоугольного треугольника: 96+54=150 (дм) Найдём второй катет основного прямоугольника по теореме Пифагора. Известен катет, равный 120дм; гипотенуза 150дм Второй катет (b) основного прямоугольника равен: b²=150²-120² b²=22500--14400 b²=8100 b=√8100=90 (дм) - длина второго катета
ответ: Второй катет равен 90дм; проекция второго катета 54дм
вот так
Объяснение:
1. Определи угол между диагоналями, которые находятся в соседних гранях куба и имеют общий конец:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть такой треугольник, который образован из двух данных диагоналей и еще одной, которая соединяет концы данных диагоналей.
У куба все грани — равные квадраты, диагонали которых одинаковы. Треугольник равносторонний, и угол между DC1 и DB равен 60°.
2. Определи угол между диагоналями, которые находятся в соседних гранях куба и не имеют общий конец:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть диагонали 1 и 2. Они скрещивающиеся, поэтому переместим их в одну плоскость, передевигая диагональ 2 на 3.
Получилась уже рассмотренная ситуация, и угол между BD и AD1 равен 60°.
3. Определи угол между диагоналями, которые находятся в противоположных гранях куба, но не параллельны:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть диагонали 1 и 2. Они скрещивающиеся, поэтому переместим их в одну плоскость, передевигая диагональ 2 на 3.
У куба все грани — квадраты, диагонали квадрата перпендикулярны, и угол между DA1 и BC1 равен 90°.