Биномиальное распределение стремится к нормальному при больших n
По условию
р = 0.9
соответственно
q = 1- p = 0.1
Математическое ожидание
М= np= 1000 * 0.9 = 900
Дисперсия
D= npq = 1000*0.9*0.1= 90
Сигма = √D= 3√10 = ~9.5
Мы рассматриваем интервал от центра распределения 900 до 940 - это больше чем четыре сигмы.
В этом случае в табличку нормального распределения можно даже не заглядывать, хвостик за четыремя сигмами очень малюсенький, пятый знак после запятой.
Половина всей выборки до 900 , половина после.
ответ
Вероятность равна ~0.5
Я прикрепил фото того, как выглядит график. А сейчас разберемся как его строить.
Для начала давай раскроем скобки:
y = (2x - 6)(x + 1) //внесли двойку
y = x*(2x - 6) + (2x - 6) //раскрыли вторую скобку
y = 2x^2 - 6x + 2x - 6
y = 2x^2 - 4x - 6
Теперь можно решать по разному. Если хочешь напишу ещё
А пока воспользуемся самым действенным
Примем x0 и y0 за координаты вершины параболы.
Тогда , а (вторую формулу если что можно не запоминать, можешь просто подставить в уравнение полученное x0)
И так
Значит
Теперь может просто подставлять значения. Но в данном случае можешь схитрить.
Так как изначальное уравнение выглядело как y = 2(x - 3)(x + 1), то если присмотреться, то можно заметить, что эта парабола пересекает ось x в точках 3 и -1. Но самое интересное это коэффициент 2. Ты можешь просто квадраты x умножать на два и получать желанную точку. После просмотра второй картинки, мои слова станут более понятны