М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ксения26941479
Ксения26941479
07.02.2023 14:52 •  Алгебра

У выражение (3x-1)²-(5-2x)²​

👇
Ответ:
solodkin1978
solodkin1978
07.02.2023

Раскроем скобки:

9x^2 - 6x + 1 - 25 +20x -4x^2

Складываем и вычитаем полученное:

5x^2 + 14x - 24  - итоговый ответ

4,6(13 оценок)
Открыть все ответы
Ответ:
Формулы сокращенного умножения

Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй. (a+b)2=a2+2ab+b2
Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй. (a-b)2=a2-2ab+b2
Произведение суммы двух величин на их разность равно разности их квадратов. (a+b)(a-b)=a2-b2
Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй. (a+b)3=a3+3a2b+3ab2+b3
Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй. (a-b)3=a3-3a2b+3ab2-b3
Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов. ( a+b)(a2-ab+b2)=a3+b3
Произведение разности двух величин на неполный квадрат суммы равно разности их кубов. (a-b)(a2+ab+b2)=a3- b3
4,6(14 оценок)
Ответ:
vasinmihailov
vasinmihailov
07.02.2023

Для того чтобы геометрическая прогрессия была бесконечно убывающей, знаменатель геометрической прогрессии q должен быть либо меньше 0, но больше -1, либо больше 0, но меньше 1. В таком случае геометрическая прогрессия будет стремиться к 0, но никогда его не достигнет.

Графически это выглядит так: -1 < q < 0 или 0 < q < 1.

Рассмотрим наши примеры:

1) q = \frac{b_2}{b_1} = \frac{-8}{-16} = \frac12. Выполняются ли условия неравенства?

0 < \frac12 < 1. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.

2) q = \frac{b_2}{b_1} = \frac{2}{3}. Выполняются ли условия неравенства?

0 < \frac23 < 1. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.

3) q = \frac{b_2}{b_1} = \frac{6}{8} = \frac34. Выполняются ли условия неравенства?

0 < \frac34 < 1. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.

4,8(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ