6 (км/час) - скорость первого туриста.
5 (км/час) - скорость второго туриста.
Объяснение:
Из пунктов А и В, расстояние между которыми 33 км, выходят одновременно два туриста и встречаются через 3 часа.
Найти скорость каждого туриста, если турист, вышедший из пункта А на 3 км больше.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х – скорость первого туриста.
у - скорость второго туриста.
3*х – расстояние первого туриста.
3*у – расстояние второго туриста.
Составить систему уравнений согласно условию задачи:
3х+3у=33
3х-3у=3
Разделить оба уравнения на 3 для упрощения:
х+у=11
х-у=1
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=11-у
11-у-у=1
-2у=1-11
-2у= -10
у= -10/-2
у=5 (км/час) - скорость второго туриста.
х=11-у
х=11-5
х=6 (км/час) - скорость первого туриста.
Проверка:
6*3+5*3=18+15=33;
6*3-5*3=18-15=3, верно.
6 (км/час) - скорость первого туриста.
5 (км/час) - скорость второго туриста.
Объяснение:
Из пунктов А и В, расстояние между которыми 33 км, выходят одновременно два туриста и встречаются через 3 часа.
Найти скорость каждого туриста, если турист, вышедший из пункта А на 3 км больше.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х – скорость первого туриста.
у - скорость второго туриста.
3*х – расстояние первого туриста.
3*у – расстояние второго туриста.
Составить систему уравнений согласно условию задачи:
3х+3у=33
3х-3у=3
Разделить оба уравнения на 3 для упрощения:
х+у=11
х-у=1
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=11-у
11-у-у=1
-2у=1-11
-2у= -10
у= -10/-2
у=5 (км/час) - скорость второго туриста.
х=11-у
х=11-5
х=6 (км/час) - скорость первого туриста.
Проверка:
6*3+5*3=18+15=33;
6*3-5*3=18-15=3, верно.
Объяснение:
Функция многочлена нечетной степени принимает сколь угодно большие значения. Возможно, Вы имели в виду x^2-3x+2 ? Однако, данная функция тоже принимает сколь угодно большие значения. Зато, она имеет точку минимума.
Преобразуем выражение:
x^2-3x+2 = (x-1.5)^2 - 0.25. Значит, минимум функции равен -0.25 (т.к. квадрат всегда неотрицательный)