ответ
1) 63/65; 2) -√2/10; 3) √((9+√80)/18); 4) -2√2
1) Косинус разности
cos(a - b) = cos a*cos b + sin a*sin b.
У нас a = arcsin(3/5); sin a = 3/5;
cos a = √(1 - sin^2 a) = √(1 - 9/25) = √(16/25) = 4/5
b = arcsin(5/13); sin b = 5/13;
cos b = √(1 - sin^2 a) = √(1 - 25/169) = √(144/169) = 12/13
sin a = 3/5; sin b = 5/13
Получаем
cos(a - b) = 4/5*12/13 + 3/5*5/13 = 48/65 + 15/65 = 63/65
2) Синус суммы
sin(a + b) = sin a*cos b + cos a*sin b
У нас a = arcctg(1/2); tg a = 1/2;
sin a = √5/5; cos a = 2√5/5.
Проверяем: sin^2 a + cos^2 a = 5/25 + 4*5/25 = 1/5 + 4/5 = 1. Все верно.
Точно также b = arcctg(-1/3); tg b = -1/3;
sin b = √10/10; cos b = -3√10/10
sin^2 b + cos^2 b = 10/100 + 9*10/100 = 1/10 + 9/10 = 1. Все верно.
Получаем
sin(a + b) = √5/5*(-3√10)/10 + 2√5/5*√10/10 = -3√50/50 + 2√50/50 = -√50/50 = -√2/10
3) Косинус половинного угла
cos (a/2) = √((1 + cos a)/2)
У нас a = arcsin(1/9); sin a = 1/9;
cos a = √(1 - sin^2 a) = √(1 - 1/81) = √(80/81) = √80/9
cos (a/2) = √((1 + √80/9)/2) = √((9 + √80)/18)
4) tg a = sin a / cos a
У нас a = arccos(-1/3); cos a = -1/3;
sin a = √(1 - cos^2 a) = √(1 - 1/9) = √(8/9) = √8/3
tg a = (√8/3) / (-1/3) = -√8/3 * 3 = -√8 = -2√2
1)sinxcosx+2sin^2 x=cos^2 x
sinxcosx+2sin^2 x-cos^2 x=0 |:cos^2 x; cos^2 x не равно 0
tgx+2tg^2 x-1=0
2tg^2 x+tgx-1=0
tgx=t
2t^2+t-1=0
D=1+8=9
t1=(-1+3)/4=1/2
t2=(-1-3)/4=-1
tgx=1/2
x=arctg1/2+pk; k принадлежит Z
или
tgx=-1
x=-p/4+pk; k принадлежит Z
2)3sin^2x-4sinxcosx+5cos^2x=2
3sin^2 x-4sinxcosx+5cos^2 x-2=0
3sin^2 x-4sinxcosx+5cos^2 x-2sin^2 x-2cos^2x=0 |:cos^2 x; cos^2 x не равно 0
3tg^2 x-4tgx+5-2tg^2 x-2=0
tg^2 x-4tgx+3=0
tgx=t
t^2-4t+3=0
D=16-12=4
t1=(4+2)/2=3
t2=(4-2)/2=1
tgx=3
x=arctg3+pk; k принадлежит Z
или
tgx=1
x=p/4+pk; k принадлежит Z
(46 2/9; -5 8/9)
Объяснение:
{2x+5y=63
{x+7y=5 │*2
{2x+5y=63
{2x+14y=10
-9y=53
y= -5 8/9
2x+5*(-53/9)=63
2x - 256/9=63
2x= 63 + 256/9
2x= 63 256/9
2x= 823/9
x= 46 2/9