Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Примеры: 14 и 25 взаимно просты, а 15 и 25 не взаимно просты (у них имеется общий делитель 5).
Наглядное представление: если на плоскости построить «лес», установив на точки с целыми координатами «деревья» нулевой толщины, то из начала координат видны только деревья, координаты которых взаимно просты.
8, 15 — не простые, но взаимно простые.
6, 8, 9 — взаимно простые числа, но не попарно взаимно простые.
8, 15, 49 — попарно взаимно простые.
пусть х - деталей в час должен был по плану выполнять завод,
(x+20) - деталей в час должен по факту выполнял завод.
тогда 120/x-120/(x+20)=1
решаем 120(x+20)-120x=(x+20)x
120·20 =x²-20x x²+20x-120·20=0
x1=-10-√(100+120·20)<0
x2=-10+√(100+120·20)=-10+50=40
ответ: 40 деталей в час должен был по плану выпускать .
проверка дает положительный результат.