М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Leerok
Leerok
31.05.2023 09:38 •  Алгебра

Найти значение производной функции в точке x0, если y=x7-2x4-2x+4, x0=-2

👇
Открыть все ответы
Ответ:
Dragon969
Dragon969
31.05.2023

а) (4у-2)*(-2у)=0

 

 -8*y^2+4*y=0

 

Квадратное уравнение, решаем относительно y:

Ищем дискриминант:
D=4^2-4*(-8)*0=16-4*(-8)*0=16-(-4*8)*0=16-(-32)*0=16-(-32*0)=16;

Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(2root16-4)/(2*(-8))=(4-4)/(2*(-8))=0/(2*(-8))=0/(-2*8)=0/(-16)=-0/16=0;
y_2=(-2root16-4)/(2*(-8))=(-4-4)/(2*(-8))=-8/(2*(-8))=-8/(-2*8)=-8/(-16)=-(-8/16)=-(-0.5)=0.5.

 

а) 8х+5(2-х)=13

 

 5*(2-x)=10-5*x

 

 3*x-3=0

 

x=3/3

 

х=1

 

 

б)  х(4х-2)-2х(2х+4)=4

 

x^2*4-x*2-2*x*(2*x+4)-4=0

 

x^2*4-x*2-(4*x+8)*x-4=0

 

-x*2-8*x-4=0

 

-10*x-4=0

 

x=-4/10

 

х=-0.4.

 

4,7(65 оценок)
Ответ:
manilipitaozk746
manilipitaozk746
31.05.2023
При n = 1 равенство примет вид 4 = 4, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

1*4+2*7+3*10+...+ n(3n+1)= n(n+1)^2

Следует проверить (доказать), что P(n + 1), то есть

1*4+2*7+3*10+...+ n(3n+1) + (n + 1) (3n + 4) = (n + 1)(n + 2)^2
истинно. Поскольку (используется предположение индукции)

1*4+2*7+3*10+...+ n(3n+1) + (n + 1) (3n + 4) = n(n+1)^2 + (n + 1) (3n + 4) 

получим

n(n+1)^2 + (n + 1) (3n + 4)  = (n + 1) (n (n + 1) + 3n + 4) = 
= (n + 1)(n^2 + n + 3n + 4) = (n + 1) (n^2 + 4n + 4) = 
= (n+ 1)(n + 2)^2 

то есть, P(n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

4,8(37 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ