Два токаря вместе обработали 232 детали. Первый работал 6 часов, а второй 4 часа, но обрабатывал в час на 8 деталей больше, чем первый токарь. Сколько деталей в час обработал каждый из них
Данное дифференциальное уравнение является обыкновенным дифференциальным уравнением первого порядка (ОДУ I) Здесь y' = dy/dx. Значит, (x^2+1)dy=(y^2+1)x dx | : (x^2+1) : (y^2+1) (комментарий: разделим оба части уравнения на x^2+1 и y^2+1) dy/(y^2+1) = x dx / (x^2+1) Проинтегрировав обе части уравнения, 1) dy/(y^2+1) = arctg y +C1(по таблице интегралов) 2) x dx / (x^2+1) = d(x^2+1) / (x^2+1) = 1/2 ln(x^2+1) +C2 получим arctg y + C1 = 1/2 ln(x^2 + 1) + C2 (Пусть C = C2-C1) arctg y = 1/2 ln(x^2 +1) + C - общий интеграл данного ОДУ (т.е. само решение)
Используется деление многочлена на многочлен углом. 1)То что данный многочлен делится без остатка на (х-1) означает, что в частном многочлен второй степени и х³+ax²+bx+c=(x-1)(x²+(a+1)x +(b+a+1)) и остаток от деления равен 0 ( см. приложение) с+b+a+1=0 (*)
2) Многочлен делится без остатка на (х+2), значит х³+ax²+bx+c=(x+2)(x²+(a-2)x +(b-2a+4) и остаток от деления равен 0 с-2b+4a-8=0 (**) многочлен при делении на (х+1) дает в остатке 10, значит х³+ax²+bx+c=(x+1)(x²+(a-1)x+(b-a+1) +10 остаток от деления с-b+a-1=10 (***)
Решаем систему трех уравнений (*) (**) (***) Решение см. в приложении Складываем (*) и (***) получим 2a+2c =10 ⇒ a+c =5 или с= 5 - a Вычитаем из (*)уравнение (***) 2b+2= -10 ⇒ 2b=-12 ⇒ b=-6 Подставим b =-6 и c=5-a в (**) 5-a+12+4a-8=0 3a+9=0 ⇒a=-3 Итак, а=-3, b=-6, с=8 сумма a+b+c= -3 - 6 + 8 = -1
x=20
y=28
Объяснение:
6x+4y=232
y=8+x
6x+4(8+x)=232
6x+32+4x=232
10x=200
x=20
y=28 ошибка ); была
Надеюсь понятно