М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Марина36843
Марина36843
27.02.2023 16:06 •  Алгебра

Для участия в тестировании из группы состоящей из 15 студентов на удачу выбирают трех человек. Найти вероятность того, что будут выбраны последние 3 студента по списку.

👇
Открыть все ответы
Ответ:
dondokov03
dondokov03
27.02.2023

Объяснение:

Мышцы ног – самая большая мышечная группа. Составляет примерно 50% общей мускулатуры человека. Это ягодичные мышцы, квадрицепсы, бицепсы бедра, икроножные мышцы.

Мышцы живота – прямые и косые мышцы.

Для поддержания мышц в тонусе и оздоровления существуют разные комплексы упражнений. В свою очередь эти упражнения условно можно разделить на три группы:

• упражнения, в которых участвует одна группа мышц;

• упражнения, в которых участвуют несколько групп мышц;

• упражнения, в которых участвуют почти все группы мышц.

Нельзя забывать, что все упражнения нужно выполнять в определённой последовательности и дозировке. Обычно упражнения начинают делать с головы, а заканчивают прыжками, бегом или ходьбой на месте.

Дозировка нагрузки – это важный момент в выполнении упражнений, касающийся изменения интенсивности и длительности нагрузки. Упражнения можно делать дольше и интенсивнее или, наоборот, уменьшить интенсивность и количество упражнений на те или иные группы мышц при их усталости. Также это касается и интервалов между упражнениями.

Существует много разных упражнений, но составляя свой комплекс, нужно точно знать цель упражнения, его дозировку и последовательность упражнений в комплексе.

Рассмотрим разминочный комплекс из 12 упражнений.

Для мышц шеи

- и. п. ноги на ширине плеч, руки на пояс. Наклоны головой. На счёт 1 наклон головы вперёд, на счёт 2 назад, на счёт три 3 в левую сторону, на счёт 4 в правую сторону.

- и. п. тоже. Повороты головой. На счёт 1,2 поворот головы в левую сторону, на счёт 3,4 в правую сторону.

- и. п. тоже. Круговые движения головой. На счёт 1,2,3,4 круговые движения в левую сторону. На счёт 1,2,3,4 в правую сторону.

Для мышц рук

- и. п. ноги на вместе, правую руку вверх над головой, левую руку вниз в дол туловища. Рывки руками. На счёт 1,2 рывки руками, на счёт 3,4 смена положения рук.

- и. п. ноги на ширине плеч, руки перед грудью. Рывки руками. На счёт 1,2 рывки руками перед собой, на счёт 3,4 рывки руками с отведением рук в левую сторону. На счёт 1,2 рывки руками перед собой, на счёт 3,4 рывки руками с отведением рук в правую сторону.

- и. п. ноги на ширине плеч, руки к плечам. Круговые движения плечами. На счёт 1,2,3,4 круговые движения вперёд. На счёт 1,2.3,4 круговые движения назад.

Для мышц спины и ног

- и. п. ноги на ширине плеч, руки на пояс. Наклоны туловища. На счёт 1 наклон туловища вперёд, на 2 назад, на 3 в левую сторону, на 4 в правую сторону.

- и. п. тоже. Повороты туловищем. На счёт 1,2 повороты туловища в левую сторону, на счёт 3,4 в правую сторону.

- и. п. тоже. Круговые движения туловищем. На счёт 1,2,3,4 круговые движения туловищем в левую сторону, на счёт 1,2,3,4 в правую сторону.

Для мышц ног

- и. п. Ноги вместе. Руки на пояс. Прыжки на месте.

- и. п. Ноги на ширине плеч, руки вытянули перед собой. Махи ногами. На счёт 1,2 махом левой ноги носком касаемся кисти правой руки, на счёт 3,4 махом правой ноги носком касаемся кисти левой руки.

- и. п. (для девочек) руки на пояс, ноги на ширине плеч. (для мальчиков) руки за голову ноги на ширине плеч.

Приседания.

4,7(17 оценок)
Ответ:
vladosik6448
vladosik6448
27.02.2023
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного 533 \ 565 , которая должна выражать дату (в каком-то неизвестном представлении).

Обозначим второе число (дата), как x_5 x_4 x_3 \ x_2 x_1 x_o ,
тогда неизвестное число должно выглядеть, как: x_o x_1 x_2 \ x_3 x_4 x_5 ,
и должно выполняться равенство: x_o x_1 x_2 \ x_3 x_4 x_5 - 533 \ 565 = x_5 x_4 x_3 \ x_2 x_1 x_o ,
или, иначе говоря: x_5 x_4 x_3 \ x_2 x_1 x_o + 533 \ 565 = x_o x_1 x_2 \ x_3 x_4 x_5 ;

Запишем это в столбик:

. \ \ \ x_5 \ \ x_4 \ x_3 \ \ \ x_2 \ x_1 \ x_o \\ + \ \ 5 \ \ \ 3 \ \ \ 3 \ \ \ \ 5 \ \ \ 6 \ \ \ 5 \\ = \ x_o \ \ x_1 \ x_2 \ \ \ x_3 \ x_4 \ x_5

Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:

\left\{\begin{array}{l} x_2 + 5 + e_1 - 10 e_2 = x_3 \ , \\ x_3 + 3 + e_2 - 10 e_3 = x_2 \ ; \end{array}\right

где: e_1 – возможная добавочная единица, уходящая из первого
и приходящая во второй разряд: e_1 \in \{ 0 , 1 \} ,

e_2 – возможная добавочная единица, уходящая из второго
и приходящая в третий разряд: e_2 \in \{ 0 , 1 \} ,

e_3 – возможная добавочная единица,
уходящая из третьего разряда в четвёртый: e_3 \in \{ 0 , 1 \} ,

После сложения уравнений системы, получаем:

8 + e_1 - 9 e_2 - 10 e_3 = 0 ;

Это возможно, только если e_2 = e_1 = 1 и при e_3 = 0 ;

Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.

Тогда получим 6 возможных вариантов разностного числа:
x_5 x_4 0 \ 4 x_1 x_o , \\ x_5 x_4 1 \ 5 x_1 x_o , \\ x_5 x_4 2 \ 6 x_1 x_o , \\ x_5 x_4 3 \ 7 x_1 x_o , \\ x_5 x_4 4 \ 8 x_1 x_o , \\ x_5 x_4 5 \ 9 x_1 x_o .

Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а x_0 \geq 6 , поскольку x_5 \neq 0 , так как с этой цифры начинается разностное число.

Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда x_1 \geq 3 , поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.

Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку x_1 x_o \geq 36 .

Стало быть, дни месяца и месяц
расположены в разрядах: x_5 x_4 x_3 x_2 .

Тогда остаётся три варианта разностного числа: x_5 x_4 \ 04 \ x_1 x_o \ \ , \ \ x_5 x_4 \ 15 x_1 x_o \ \ , \ \ x_5 x_4 \ 26 \ x_1 x_o \ \ .

\left\{\begin{array}{l} x_5 = x_o + 5 - 10 = x_o - 5 \leq 4 \ , \\ x_4 = x_1 + 6 + 1 - 10 = x_1 - 3 \leq 6 \ ; \end{array}\right

отсюда:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

------------------

Рассмотрим первый вариант: x_5 x_4 \ 0 4 \ x_1 x_o ,
здесь 0 4 может играть роль апреля.

Сказано, что сумма всех цифр должна быть кратна трём, тогда:

x_5 + x_4 + x_3 + x_2 + x_1 + x_o = x_5 + x_4 + 0 + 4 + x_4 + 3 + x_5 + 5 = \\\\ = 2 ( x_5 + x_4 + 6 ) = 3 n \ ;

x_5 + x_4 = 3 m ;

Возможны только случаи:

1 + 2 = 3 m ;

1 + 5 = 3 m ;

2 + 1 = 3 m ;

2 + 4 = 3 m ;

3 + 0 = 3 m ;

Учитывая, что:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

получаем разностные числа:

120456 – дата 12/04/56 г.
150486 – дата 15/04/86 г.
210447 – дата 21/04/47 г.
240477 – дата 24/04/77 г.
300438 – дата 24/04/38 г.

------------------

Рассмотрим второй вариант: x_5 x_4 \ 1 5 \ x_1 x_o ,
здесь 15 может играть только роль числа месяца (дня).

Сказано, что сумма всех цифр должна быть кратна трём, тогда:

x_5 + x_4 + x_3 + x_2 + x_1 + x_o = x_5 + x_4 + 1 + 5 + x_4 + 3 + x_5 + 5 = \\\\ = 2 ( x_5 + x_4 + 7 ) = 3 n \ ;

x_5 + x_4 + 1 = 3 m ;

x_5 + x_4 = 3 m + 2 ;

Возможен только один случай:

1 + 1 = 3 m + 2 ;

Учитывая, что:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

получаем разностное число:

111546 – дата 11/15/46 г.

продолжение >>>

Дорогие участники сайта знания.com. у меня появилась проблема с . условие: мы имеем неизвестное чи
Дорогие участники сайта знания.com. у меня появилась проблема с . условие: мы имеем неизвестное чи
4,8(94 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ