Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
19 ч 20 мин = 19 1/3 ч 19 1/3 - 9 = 10 1/3 (ч) - время в пути. 10 1/3 ч = 31/3 ч Пусть х км/ч - собственная скорость баржи, тогда (х + 3) км/ч скорость баржи по течению реки, (х - 3) км/ч - скорость баржи против течения реки.
Второй корень не подходит, значит, собственная скорость баржи 15 км/ч. 15 - 3 = 12 (км/ч) - скорость баржи вверх по реке. 60 : 12 = 5 (ч) - шла баржа от пункта А до пункта В. 9 + 5 = 14 (ч) - время, в которое баржа прибыла в пункт В. ответ: в пункт В баржа прибыла в 14 часов.
Расскрываем скобки вначале,получаем:
Систему: 3х-6у-2=-2
2х=2-1=3у-1
Упрощаем, получаем систему: 3х-6у=0
2х+2=3у
далее переносим из второго уравнения 3у за знак равно, получаем систему:3х-6у=0
2х-3у=-2
Умножаем второе уравнение на (-2), получаем систему: 3х-6у=0
-4х+6у=4
Складываем два уравнения, получаем -х=4; х=-4
Подставляем в любое из уравнений х (икс) и найдём у (игрек): у=-2
ответ: система: х=-4
у=-2