Сразу поменяю а на х. Мне так просто привычней. Чтобы значение выражения было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем. Сразу заметим, что х не равен -2 Для этого можно было бы попробывать решить уравнение Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения. Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).
Нам остается последний вариант приравнять х=0, тогда мы получаем
ответ х=0 единственный целое значение, при котором выражение тоже целое число!
Если f(-x)=-f(x), то функция нечетная
В другом случае функция ни четная, ни нечетная
a) f(x)=5x^4+2x^2
f(x)=5(-x)^4+2(-x)^2=5x^4+2x^2=f(x) четная
б)f(x)=-6+sin^2x
f(-x)=-6+sin^2(-x)=-6+sin^2x=f(x) четная
в)f(x)=x|x|
f(-x)=(-x)|(-x)|=-x|x|=-f(x) нечетная
г)f(x)=x^2sinx
f(-x)=(-x)^2sin(-x)=-x^2sinx=-f(x) нечетная
д)f(x)=3x^2+cos3x/2
f(-x)=3(-x)^2+cos3(-x)/2=3x^2+cos3x/2=f(x) четная
е)f(x)=-10^8+2,5
f(-x)=-10^8+2,5=f(x) четная
ж)f(x)=2x^7+3x^3
f(-x)=2(-x)^7+3(-x)^3=-2x^7-3x^3=-(2x^7+3x^3)=-f(x) нечетная
з)f(x)=1/3x^3*tgx^2
f(-x)=1/3(-x)^3*tg(-x)^2=-1/3x^3*tgx^2=-(1/3x^3*tgx^2)=-f(x) нечетная