М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
merit6052
merit6052
21.10.2021 08:26 •  Алгебра

Докажите, что а)5n^2+3n-12 кратно 2 б)2n^3+7n+3 кратно 3

👇
Ответ:
Софья3601
Софья3601
21.10.2021
a) Чтобы доказать, что выражение 5n^2 + 3n - 12 кратно 2, нужно убедиться, что оно делится на 2 без остатка.

Для этого необходимо проверить, делится ли каждый коэффициент в выражении на 2 без остатка.

Коэффициент при n^2 равен 5, и он не делится на 2 без остатка. Значит, уже на этом этапе можно сделать вывод, что выражение не кратно 2.

Но для полноты доказательства продолжим.

Коэффициент при n равен 3, и он не делится на 2 без остатка. Это означает, что дополнительно можно утверждать, что выражение не кратно 2, так как даже сумма коэффициента при n^2 и коэффициента при n не делится на 2 без остатка.

Константа -12 делится на 2 без остатка (-12 ÷ 2 = -6), поэтому этот член помогает нам обосновать, что выражение не кратно 2.

Итак, на основании всех этих рассуждений можно сделать вывод, что выражение 5n^2 + 3n - 12 не кратно 2.

b) Чтобы доказать, что выражение 2n^3 + 7n + 3 кратно 3, нужно убедиться, что оно делится на 3 без остатка.

Для этого снова проверим, делится ли каждый коэффициент в выражении на 3 без остатка.

Коэффициент при n^3 равен 2, и он не делится на 3 без остатка. Значит, уже на этом этапе можно сделать вывод, что выражение не кратно 3.

Коэффициент при n равен 7, и он не делится на 3 без остатка. Это означает, что дополнительно можно утверждать, что выражение не кратно 3, так как даже сумма коэффициента при n^3 и коэффициента при n не делится на 3 без остатка.

Константа 3 не делится на 3 без остатка (3 ÷ 3 = 1), поэтому этот член тоже не помогает нам обосновать, что выражение кратно 3.

Итак, на основании всех этих рассуждений можно сделать вывод, что выражение 2n^3 + 7n + 3 не кратно 3.

Таким образом, было показано, что ни одно из данных выражений не кратно соответствующему числу.
4,4(88 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ