М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
snikola97
snikola97
23.01.2023 03:08 •  Алгебра

Точки K (4; 3), M (-5; -5), A (4; -5) являются вершинами треугольника KMA. Найдите площадь треугольника.​

👇
Ответ:
lyuda00777
lyuda00777
23.01.2023

36

Объяснение:

Абсолютная величина определителя равна площади параллелограмма, построенного на векторах.

Площадь искомого треугольника будет в два раза меньше площади параллелограмма.

Находим координаты векторов (координата конца минус координата конца) и вычисляем определитель

============      

Не забывайте нажать " ", поставить оценку и, если ответ удовлетворил, то выберите его как "Лучший"    

Бодрого настроения и добра!      

Успехов в учебе!


Точки K (4; 3), M (-5; -5), A (4; -5) являются вершинами треугольника KMA. Найдите площадь треугольн
Точки K (4; 3), M (-5; -5), A (4; -5) являются вершинами треугольника KMA. Найдите площадь треугольн
4,7(79 оценок)
Ответ:
Aisezim2002
Aisezim2002
23.01.2023

36

Объяснение:

S=1/2ab

a=9

b=8

S=1/2(9*8)=1/2*72=36

4,7(58 оценок)
Открыть все ответы
Ответ:
kavabanga1337
kavabanga1337
23.01.2023
1) Пусть задача поставлена для функции y=ctg(2x)+sin(x).
ctg(2x) имеет множество значений (-inf;+inf). ctg(2x)+sin(x) тоже имеет множество значений (-inf;+inf). Поэтому прямая y=3-p имеет хотя бы одну общую точку с y=ctg(2x)+sin(x) при любых значениях p.
ответ: при любых значениях p.
2) Пусть задача поставлена для функции y=ctg²(x)+sin(x).
y=cos²(x)/sin²(x)+sin(x)=(1-sin²(x))/sin²(x)+sin(x)=1/sin²(x)+sin(x)-1
Требуется определить множество значений этой функции. Пусть sin(x) = t. Тогда y(x)=f(t)=1/t²+t-1. Наибольшее и наименьшее значения будем искать на отрезке t∈[-1;1], так как t=sin(x).
f'(t)=-2/t³+1=(t³-2)/t³.
Нули числителя: t=∛2
Нули знаменателя: t=0.
Расположим эти точки на числовой прямой.
f'>0             f'>0          f'<0          f'<0          f'>0
-1 0 1  ∛2 >
f   ↑                  ↑              ↓              ↓                ↑
На отрезке [-1;1] функция возрастает с -1 до 0-. Затем с 0+ до 1 убывает. Это значит, что наименьшее значение на отрезке [-1;1] достигается на одном из его концов. То есть min(f(-1),f(1))=min(1/(-1)²-1-1, 1/1²+1-1)=-1.
При стремлении t к 0- и к 0+ функция f(t) принимает сколь угодно большие значения. Поэтому множество значений функции f(t) и y(x) равно [-1;+inf).
y=3-p - горизонтальная прямая. Она имеет общую точку с графиком функции y(x)=1/sin²(x)+sin(x)-1, если пересекает множество значений y(x). Таким образом, 3-p>=-1, p<=4.
ответ: при p<=4.
4,7(28 оценок)
Ответ:
Igor171717
Igor171717
23.01.2023
Решено с одного пользователя на сайте:

x^4+6x^3-21x^2+78x-16=0

Раскладываем с МНК (метода неопределенных коэффициентов)
Знаем, что любое уравнение четвертой степени раскладывается на два квадратных по принципу:

(x^2+ax+b)(x^2+cx+d)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd=\\ x^4+(cx^3+ax^3)+(dx^2+acx^2+bx^2)+(adx+bcx)+bd= \\ x^4+x^3(c+a)+x^2(d+a+b)+x(ad+bc)+bd
Здесь применяем наше уравнение:

c+a=6\\&#10;d+ac+b=-21\\&#10;ad+bc=78\\&#10;bd=-16

Решаем систему:

$$\left\{&#10;\begin{aligned}&#10;c+a&=6\\&#10;d+ac+b&=-21\\&#10;ad+bc=78\\&#10;bd=-16&#10;\end{aligned}&#10;\right.$$

Такую систему решаем с подстановки.
Возьмем bd=-16
Вариантов такого решения несколько. Вот они:

\left \{ {{b=-2} \atop {d=8}} \right.; \ \left \{ {{b=2} \atop {d=-8}} \right.; \ \left \{ {{b=4} \atop {d=-4}} \right.;\ \left \{ {{b=-4} \atop {d=4}} \right.; \left \{ {{b=1} \atop {d=-16}} \right.;\ \left \{ {{b=-1} \atop {d=16}} \right..

Надо найти такую пару, чтобы она удовлетворяла нашему уравнению!
Итак,

a=6-c\\b=-2\\c=?\\d=8

Подставляем его в третье уравнение нашей системы:

ad+bc=78\\&#10;(6-c)\cdot 8+(-2) \cdot c=78\\&#10;48-8c-2c=78\\-10c=30\\&#10;c=-3

Значит, мы имеем:

a=6+3=9\\b=-2\\c=-3\\d=8

Для проверки подставим все значения во второе уравнение нашей системы:

8+9\cdot (-3)-2=-21\\&#10;8-27-2=-21\\&#10;-21=-21&#10;

Значит, мы верно выбрали пару. Остальные пары нам не подходят.
Все значения подставляем в два квадратных уравнения:

(x^2+ax+b)(x^2+cx+d=0)\\&#10;(x^2+9x-2)(x^2-3x+8)=0

Решаем каждое уравнение в отдельности:

x^2+9x-2=0\\&#10;a=1, b=9, c=-2\\&#10;D=b^2-4ac=81+8=89; \ D= \sqrt{89}\\\\&#10;x_{1/2}= \frac{-b\pm \sqrt{D} }{2a}= \frac{-9\pm \sqrt{89} }{2}\\\\&#10;x_1=\frac{\sqrt{89} }{2}-4 \frac{1}{2} \\\\ x_2=-\frac{\sqrt{89} }{2}-4\frac{1}{2}

x^2-3x+8=0\\&#10;D=9-32=-23

Нет действительных решений.

ответ: &#10;x_1=\frac{\sqrt{89} }{2}-4 \frac{1}{2}; x_2=-\frac{\sqrt{89} }{2}-4 \frac{1}{2}
4,5(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ