Пусть начальная цена 1 стола была х рублей, а начальная цена 1 стула была у рублей. Тогда за два стола и шесть стульев надо заплатить 2*х+6*у рублей, что по условию задачи 232 рубля.
Получаем первое уравнение: 2*х+6*у = 232
После того, как столы подешевели на 15%, они стали стоить (х-0,15х) рублей (т.к. 15% от х - это 0,15х, а когда они подешевели, от начальной цены отняли величину их удешевления).
После того, как стулья подешевели на 20%, они стали стоить (у-0,2у) рублей (т.к. 20% от у - это 0,2у, а когда они подешевели, от начальной цены отняли величину их удешевления)
Тогда за один стол и два стула по новым ценам заплатили 1*(х-0,15х) + 2*(у-0,2у) рублей, что по условию задачи 87,2.
Получаем второе уравнение: 0,85х+2*0,8у=87,2.
Решаем получившуюся систему:
80 рублей - начальная цена стола, 12 рублей - начальная цена стула.
Пусть начальная цена 1 стола была х рублей, а начальная цена 1 стула была у рублей. Тогда за два стола и шесть стульев надо заплатить 2*х+6*у рублей, что по условию задачи 232 рубля.
Получаем первое уравнение: 2*х+6*у = 232
После того, как столы подешевели на 15%, они стали стоить (х-0,15х) рублей (т.к. 15% от х - это 0,15х, а когда они подешевели, от начальной цены отняли величину их удешевления).
После того, как стулья подешевели на 20%, они стали стоить (у-0,2у) рублей (т.к. 20% от у - это 0,2у, а когда они подешевели, от начальной цены отняли величину их удешевления)
Тогда за один стол и два стула по новым ценам заплатили 1*(х-0,15х) + 2*(у-0,2у) рублей, что по условию задачи 87,2.
Получаем второе уравнение: 0,85х+2*0,8у=87,2.
Решаем получившуюся систему:
80 рублей - начальная цена стола, 12 рублей - начальная цена стула.
y=1,5x - линейное уравнение.
Значение функции - у (зависимая переменная).
Аргумент функции - х (независимая переменная).
1)
При х = 4;-2, y = 6;-3.
2)
При у = -6, х = -4.
3)
При у = любое отрицательное число, х = любое отрицательное число, т.к. х умножается на 1,5, то есть на положительное число и становится у.
P.S. график функции на картинке.